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1. Introduction

This is a study note for Howe’s proof of the transcendental version of the theory of spherical Harmonics,

which is the decomposition of the oscillator representation for the dual pair (S̃L2(R), O(p)).

2. Oscillator representations

We write S̃L2(R) the metaplectic cover of SL2(R), it exists because the fundamental group of SL2(R) is
Z.

Let S(R) be the Schwartz space on R, we can define a representation ω of sl2 on S(R) via

ω(h) = x
d

dx
+

1

2

ω(e+) =
i

2
x2

ω(e−) =
i

2

d2

dx2

here {h, e+, e−} is the standard basis of sl2. The operator x d
dx is called the Euler operator over R.

Theorem 2.1. (Shale-Weil) The sl2 module S(R) exponentiates to a unitary representation S̃L2(R) on
L2(R).

We will call this representation the oscillator representation of S̃L2(R).
The one-parameter subgroups generated by h, e+, e− can be also described as

ω(exp(th))f(x) = et/2f(etx)

ω(exp(te+))f(x) = eitx
2

f(x)

ω(exp(te−)) = convolution with
i+ 1

2
(πt)−

1
2 e−ix2/2t

The operator

2ω(k) = 2i(ω(e−)− ω(e+)) = x2 − d2

dx2

is known as the Hermitian operator.
We consider the following operators on S(R)

a = x+
d

dx

a+ = x− d

dx

here + stands for the adjoint of an operator under the usual inner product on S(R). For v0 = e−x2/2, we
can set vj = (a+)jv0.

Let Pj be the j-th Hermitian polynomials, which is a polynomial of degree j, then we have vj = Pj(x)e
− x2

2 ,
then for the Hermitian functions {vj} we have

Lemma 2.2. The Hermitian functions {vj} form an orthogonal basis of L2(R).
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From the relations

x =
1

2
(a+ a+)

d

dx
=

1

2
(a− a+)

ω(k) =
1

4
(aa+ + a+a)

then we can compute ω(k)vj = (j + 1
2 )vj . This shows that {vj} is an orthogonal k-basis. {v2j} spans the

lowest weight module V1/2 of sl2 with lowest weight vector v0, {v2j+1} spans the lowest weight module V3/2

of sl2 with lowest weight vector v3/2. The oscillator representation decomposes as

S(R) = V 1
2
⊕ V 3

2

We can also define the n-th tensor power of the oscillator representation, it can be identified with S(Rn)
and we have the representation (ωn,Rn) is given by

ωn(h) =

n∑
i=1

xj
∂

∂xj
+

n

2

ωn(e+) =
i

2

n∑
j=1

x2
j

ωn(e−) =
i

2

n∑
j=1

∂

∂x2
j

=
i

2
∆n

Let O(p) be the compact orthogonal group then it acts on S(Rp) via

g · f(x) = f(g−1x)

it turns out that the action of O(p) and S̃L2(R) are intimately related and the spectral decomposition of
one of them completely determines the spectral decomposition of the other.

We have the following remarkable connection between the Casimir operators of O(p) and sl2

Co(p) = ωp(Csl2)− (
p

2
− 1)2 + 1

this can be proven using the explicit description of the basis of Lie algebra in terms of the differential
operators on S(Rp). Relations of this sort are predicted by the theory of dual pairs.

3. Theory of spherical harmonics

Theorem 3.1. (Transcendental version of the theory of spherical harmonics)

• We have a decomposition

S(Rp) =

∞∑
m=0

(H̃p
m ⊗ V p

2+m)−

of S(Rp) into O(p)× S̃L2(R) modules, here ”-” indicates closure in S(Rp).

• The space H̃p
m is an irreducible O(p) module of dimension β(p,m), in particular the H̃p

m are all
distinct as O(p) modules, and the decomposition in (3.1) is a decomposition into irreducible O(p)×
S̃L2(R) modules.

Decomposition of this kind is typical in the theory of dual pairs 3.1.

Remark 3.2. There is also a L2 version of the decomposition (3.1).

Proof. We consider S(Rp) the p-th fold tensor power of the oscillator representation on S(Rp), from the
decomposition of the tensor product of representations of sl2, we have

S(Rp)|sl2 ∼= V p
2
⊕

∑
m≥1

β(p,m)V p
2+m
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this is a decomposition of the sl2 modules with explicitly known multiplicities. We know that in addition to

the sl2-action, there is also a commuting action of O(p). Thus S(Rp) is a module for S̃L2(R)×O(p).

We now describe the structure of this module: for each possible k eigenvalue p
2 +m, denote by H̃p

m the

space of n−-null vectors of that k-eigenvalue. Each function ϕ ∈ H̃p
m generates an sl2 module isomorphic to

V p
2+m, hence defines an embedding φϕ : V p

2+m → S(Rp), let ϕ vary over H̃p
m, we get a mapping

Harm : H̃p
m ⊗ V p

2+m → S(Rp)

ϕ⊗ v 7→ φϕ(v)

the map Harm is an isomorphism between the sum of sl2 submodules of S(Rp) that is isomorphic to V p
2+m.

Since H̃p
m is defined by the sl2 action, it will be preserved by O(p), and in fact Harm is an isomorphism

of O(p)× S̃L2(R) module.
We now describe the O(p) module structure further. From the formula for ωp(n−)

ωp(n−) =
1

2
e−

r2

2 ∆pe
r2

2

we can show that kerωp(n−) are precisely the functions of the form fe−r2/2 for f harmonic, and for fe−r2/2

to be a k-eigenvector of eigenvalue p
2 + m, it is necessary for f to be a harmonic polynomial of degree m,

hence H̃p
m = Hp

me−r2/2 where
Hp

m = ker ∆p : Pm(Rp) −→ Pm−2(Rp)

Considering the unit sphere Sp−1 ⊆ Rp, we may identify the stabilizer of eP as O(p − 1). We can use
f 7→ f(eP ) to define an O(p− 1)-invariant functional on Hp

m. In this way we get

eY =

[m2 ]∑
j=0

cjx
m−2j
p (r2p−1)

j

eY is harmonic and it is the only nonzero O(p) submodule of Hp
m, namely Hp

m itself. Since Hp
m is irreducible,

we can calculate its dimension from the fact that

∆p : Pm(Rp) −→ Pm−2(Rp)

is a surjective map. □
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