TRANSCENDENTAL VERSION OF THE THEORY OF SPHERICAL HARMONICS

RUI CHEN

1. Introduction

This is a study note for Howe's proof of the transcendental version of the theory of spherical Harmonics, which is the decomposition of the oscillator representation for the dual pair $\left(\widetilde{S L_{2}}(\mathbb{R}), O(p)\right)$.

2. Oscillator Representations

We write $\widetilde{S L}_{2}(\mathbb{R})$ the metaplectic cover of $\mathrm{SL}_{2}(\mathbb{R})$, it exists because the fundamental group of $\mathrm{SL}_{2}(\mathbb{R})$ is \mathbb{Z}.

Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space on \mathbb{R}, we can define a representation ω of sl_{2} on $\mathcal{S}(\mathbb{R})$ via

$$
\begin{aligned}
\omega(h) & =x \frac{d}{d x}+\frac{1}{2} \\
\omega\left(e^{+}\right) & =\frac{i}{2} x^{2} \\
\omega\left(e^{-}\right) & =\frac{i}{2} \frac{d^{2}}{d x^{2}}
\end{aligned}
$$

here $\left\{h, e^{+}, e^{-}\right\}$is the standard basis of $\mathfrak{s l}_{2}$. The operator $x \frac{d}{d x}$ is called the Euler operator over \mathbb{R}.
Theorem 2.1. (Shale-Weil) The $\mathfrak{s l}_{2}$ module $\mathcal{S}(\mathbb{R})$ exponentiates to a unitary representation $\widetilde{S L}_{2}(\mathbb{R})$ on $L^{2}(\mathbb{R})$.

We will call this representation the oscillator representation of $\widetilde{S L}_{2}(\mathbb{R})$.
The one-parameter subgroups generated by h, e^{+}, e^{-}can be also described as

$$
\begin{aligned}
\omega(\exp (t h)) f(x) & =e^{t / 2} f\left(e^{t} x\right) \\
\omega\left(\exp \left(t e^{+}\right)\right) f(x) & =e^{i t x^{2}} f(x) \\
\omega\left(\exp \left(t e^{-}\right)\right) & =\text {convolution with } \frac{i+1}{2}(\pi t)^{-\frac{1}{2}} e^{-i x^{2} / 2 t}
\end{aligned}
$$

The operator

$$
2 \omega(\mathfrak{k})=2 i\left(\omega\left(e^{-}\right)-\omega\left(e^{+}\right)\right)=x^{2}-\frac{d^{2}}{d x^{2}}
$$

is known as the Hermitian operator.
We consider the following operators on $\mathcal{S}(\mathbb{R})$

$$
\begin{aligned}
a & =x+\frac{d}{d x} \\
a^{+} & =x-\frac{d}{d x}
\end{aligned}
$$

here + stands for the adjoint of an operator under the usual inner product on $\mathcal{S}(\mathbb{R})$. For $v_{0}=e^{-x^{2} / 2}$, we can set $v_{j}=\left(a^{+}\right)^{j} v_{0}$.

Let P_{j} be the j-th Hermitian polynomials, which is a polynomial of degree j, then we have $v_{j}=P_{j}(x) e^{-\frac{x^{2}}{2}}$, then for the Hermitian functions $\left\{v_{j}\right\}$ we have
Lemma 2.2. The Hermitian functions $\left\{v_{j}\right\}$ form an orthogonal basis of $L^{2}(\mathbb{R})$.

From the relations

$$
\begin{aligned}
x & =\frac{1}{2}\left(a+a^{+}\right) \\
\frac{d}{d x} & =\frac{1}{2}\left(a-a^{+}\right) \\
\omega(\mathfrak{k}) & =\frac{1}{4}\left(a a^{+}+a^{+} a\right)
\end{aligned}
$$

then we can compute $\omega(\mathfrak{k}) v_{j}=\left(j+\frac{1}{2}\right) v_{j}$. This shows that $\left\{v_{j}\right\}$ is an orthogonal \mathfrak{k}-basis. $\left\{v_{2 j}\right\}$ spans the lowest weight module $V_{1 / 2}$ of $\mathfrak{s l}_{2}$ with lowest weight vector $v_{0},\left\{v_{2 j+1}\right\}$ spans the lowest weight module $V_{3 / 2}$ of $\mathfrak{s l}_{2}$ with lowest weight vector $v_{3 / 2}$. The oscillator representation decomposes as

$$
\mathcal{S}(\mathbb{R})=V_{\frac{1}{2}} \oplus V_{\frac{3}{2}}
$$

We can also define the n-th tensor power of the oscillator representation, it can be identified with $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and we have the representation $\left(\omega^{n}, \mathbb{R}^{n}\right)$ is given by

$$
\begin{aligned}
\omega^{n}(h) & =\sum_{i=1}^{n} x_{j} \frac{\partial}{\partial x_{j}}+\frac{n}{2} \\
\omega^{n}\left(e^{+}\right) & =\frac{i}{2} \sum_{j=1}^{n} x_{j}^{2} \\
\omega^{n}\left(e^{-}\right) & =\frac{i}{2} \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}^{2}}=\frac{i}{2} \Delta_{n}
\end{aligned}
$$

Let $O(p)$ be the compact orthogonal group then it acts on $\mathcal{S}\left(\mathbb{R}^{p}\right)$ via

$$
g \cdot f(x)=f\left(g^{-1} x\right)
$$

it turns out that the action of $O(p)$ and $\widetilde{S L}_{2}(\mathbb{R})$ are intimately related and the spectral decomposition of one of them completely determines the spectral decomposition of the other.

We have the following remarkable connection between the Casimir operators of $O(p)$ and $\mathfrak{s l}_{2}$

$$
\mathcal{C}_{\mathfrak{o}(p)}=\omega^{p}\left(\mathcal{C}_{\mathfrak{s l}_{2}}\right)-\left(\frac{p}{2}-1\right)^{2}+1
$$

this can be proven using the explicit description of the basis of Lie algebra in terms of the differential operators on $\mathcal{S}\left(\mathbb{R}^{p}\right)$. Relations of this sort are predicted by the theory of dual pairs.

3. Theory of spherical harmonics

Theorem 3.1. (Transcendental version of the theory of spherical harmonics)

- We have a decomposition

$$
\mathcal{S}\left(\mathbb{R}^{p}\right)=\sum_{m=0}^{\infty}\left(\tilde{\mathcal{H}}_{m}^{p} \otimes V_{\frac{p}{2}+m}\right)^{-}
$$

of $\mathcal{S}\left(\mathbb{R}^{p}\right)$ into $O(p) \times \widetilde{S L}_{2}(\mathbb{R})$ modules, here "-" indicates closure in $\mathcal{S}\left(\mathbb{R}^{p}\right)$.

- The space $\tilde{\mathcal{H}}_{m}^{p}$ is an irreducible $O(p)$ module of dimension $\beta(p, m)$, in particular the $\tilde{\mathcal{H}}_{m}^{p}$ are all distinct as $O(p)$ modules, and the decomposition in (3.1) is a decomposition into irreducible $O(p) \times$ $\widetilde{S L}_{2}(\mathbb{R})$ modules.

Decomposition of this kind is typical in the theory of dual pairs 3.1
Remark 3.2. There is also a L^{2} version of the decomposition 3.1.
Proof. We consider $\mathcal{S}\left(\mathbb{R}^{p}\right)$ the p-th fold tensor power of the oscillator representation on $\mathcal{S}\left(\mathbb{R}^{p}\right)$, from the decomposition of the tensor product of representations of $\mathfrak{s l}_{2}$, we have

$$
\left.\mathcal{S}\left(\mathbb{R}^{p}\right)\right|_{\mathfrak{s l}_{2}} \cong V_{\frac{p}{2}} \oplus \sum_{m \geq 1} \beta(p, m) V_{\frac{p}{2}+m}
$$

this is a decomposition of the $\mathfrak{s l}_{2}$ modules with explicitly known multiplicities. We know that in addition to the $\mathfrak{s l}_{2}$-action, there is also a commuting action of $O(p)$. Thus $\mathcal{S}\left(\mathbb{R}^{p}\right)$ is a module for $\widetilde{S L}_{2}(\mathbb{R}) \times O(p)$.

We now describe the structure of this module: for each possible \mathfrak{k} eigenvalue $\frac{p}{2}+m$, denote by $\tilde{\mathcal{H}}_{m}^{p}$ the space of n^{-}-null vectors of that \mathfrak{k}-eigenvalue. Each function $\phi \in \tilde{\mathcal{H}}_{m}^{p}$ generates an $\mathfrak{s l}_{2}$ module isomorphic to $V_{\frac{p}{2}+m}$, hence defines an embedding $\varphi_{\phi}: V_{\frac{p}{2}+m} \rightarrow \mathcal{S}\left(\mathbb{R}^{p}\right)$, let ϕ vary over $\tilde{\mathcal{H}}_{m}^{p}$, we get a mapping

$$
\begin{aligned}
\operatorname{Har}_{m}: \tilde{\mathcal{H}}_{m}^{p} \otimes V_{\frac{p}{2}+m} & \rightarrow \mathcal{S}\left(\mathbb{R}^{p}\right) \\
\phi \otimes v & \mapsto \varphi_{\phi}(v)
\end{aligned}
$$

the map Har_{m} is an isomorphism between the sum of $\mathfrak{s l}_{2}$ submodules of $\mathcal{S}\left(\mathbb{R}^{p}\right)$ that is isomorphic to $V_{\frac{p}{2}+m}$.
Since $\tilde{\mathcal{H}}_{\underline{m}}^{p}$ is defined by the $\mathfrak{s l}_{2}$ action, it will be preserved by $O(p)$, and in fact Har_{m} is an isomorphism of $O(p) \times \widetilde{S L_{2}}(\mathbb{R})$ module.

We now describe the $O(p)$ module structure further. From the formula for $\omega^{p}\left(n^{-}\right)$

$$
\omega^{p}\left(n^{-}\right)=\frac{1}{2} e^{-\frac{r^{2}}{2}} \Delta_{p} e^{\frac{r^{2}}{2}}
$$

we can show that $\operatorname{ker} \omega^{p}\left(n^{-}\right)$are precisely the functions of the form $f e^{-r^{2} / 2}$ for f harmonic, and for $f e^{-r^{2} / 2}$ to be a \mathfrak{k}-eigenvector of eigenvalue $\frac{p}{2}+m$, it is necessary for f to be a harmonic polynomial of degree m, hence $\tilde{\mathcal{H}}_{m}^{p}=\mathcal{H}_{m}^{p} e^{-r^{2} / 2}$ where

$$
\mathcal{H}_{m}^{p}=\operatorname{ker} \Delta_{p}: \mathcal{P}^{m}\left(\mathbb{R}^{p}\right) \longrightarrow \mathcal{P}^{m-2}\left(\mathbb{R}^{p}\right)
$$

Considering the unit sphere $S^{p-1} \subseteq \mathbb{R}^{p}$, we may identify the stabilizer of e_{P} as $O(p-1)$. We can use $f \mapsto f\left(e_{P}\right)$ to define an $O(p-1)$-invariant functional on \mathcal{H}_{m}^{p}. In this way we get

$$
e_{Y}=\sum_{j=0}^{\left[\frac{m}{2}\right]} c_{j} x_{p}^{m-2 j}\left(r_{p-1}^{2}\right)^{j}
$$

e_{Y} is harmonic and it is the only nonzero $O(p)$ submodule of \mathcal{H}_{m}^{p}, namely \mathcal{H}_{m}^{p} itself. Since \mathcal{H}_{m}^{p} is irreducible, we can calculate its dimension from the fact that

$$
\Delta_{p}: \mathcal{P}^{m}\left(\mathbb{R}^{p}\right) \longrightarrow \mathcal{P}^{m-2}\left(\mathbb{R}^{p}\right)
$$

is a surjective map.

