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1. Introduction

This is a study note for the classification of smooth affine spherical varieties based on the papers [Kno98],
[KVS06].

2. Multiplicity free representations

This is a summary for Knop’s paper [Kno98].
We study multiplicity free representations of connected reductive groups, we first give a simple criterion

to decide the multiplicity freeness of a representation. Then we determine all invariant differential operators
in terms of a finite reflection group, the little Weyl group, and give a characterization of the spectrum of the
Capelli operators. At the end, we reproduce the classification of multiplicity free representations.

A finite-dimensional representation V of a connected reductive group G is called multiplicity free if its
coordinate ring contains every simple G-module at most once. Multiplicity free representations form a very
restricted class of representations, nevertheless they are very important due to Roger Howe’s philosophy that
every ”nice” result in the invariant theory of particular representations can be traced back to a multiplicity
free representation. Also all of Weyl’s first and second fundamental theorems can be explained by some
multiplicity freeness result.

The multiplicity freeness criterion is a corollary of the local structure theorem of Brion-Luna-Vust. The
determination of invariant differential operators is a very special result of a much general result valid for any
G-variety by Knop, the calculation for the Weyl group is very interesting.

2.1. The local structure theorem. We present the local structure theorem in the form of [Kno94].
Let G be a connected reductive group and X any affine G-variety, for a function f on X, we denote Xf

the points of where f is non-zero, the Lie algebra acts on functions by derivations, hence we get a morphism

ψf : Xf → g∗, : x 7→ [ξ 7→ ξf(x)

f(x)
]

let B ⊆ G be a Borel subgroup and f ∈ C[X] be a highest weight vector with respect to B. Then
Pf := {g ∈ G | gf ∈ C∗f} is a parabolic subgroup of containing B having a character χf with gf = χf (g)f
for all g ∈ Pf . Let P

u
f be the unipotent radical and pf , p

u
f the Lie algebra of Pf , P

u
f .

Proposition 2.1. The roots of Pf are exactly those α for which ⟨χf , α
∨⟩ ≥ 0.

We will identify g∗ with g using a G-invariant scalar product (·, ·). Let T ⊆ B be a maximal torus with
Lie algebra t, for a character χ ∈ t∗, we let χ′ be the corresponding element in t.

Theorem 2.2. Let f ∈ C[X] be a highest weight vector, then the morphism ψf : Xf → g∗ is Pf equivariant,
its image is a single Pf -orbit χ

′
f + puf , and every isotropy group of this orbit is a Levi component of Pf .

Corollary 2.3. For x ∈ Xf and let L be the isotropy group of ψf (x) in Pf , then L is a Levi subgroup of Pf

and Σ := ψ−1(ψf (x)) is an affine L-stable subvariety of Xf such that Pf ×L Σ → Xf is a Pf -equivariant
isomorphism.
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2.2. Multiplicity free spaces. Let V be a finite dimensional G-module.

Definition 2.4. We say that V is multiplicity free if its coordinate ring P := C[V ] contains every simple
G-module at once.

We have a geometric criterion for multiplicity freeness

Theorem 2.5. Let B ⊆ G be a Borel subgroup, then V is multiplicity free if and only if B has an open orbit
in V .

Proof. If P contains two different but isomorphic simple submodulesM1 andM2, let fi be the highest weight
vector of Mi, thn fi are B-semiinvariant functions for the same weight, hence h = f1/f2 is a non-constant
B-invariant rational function on V , this contradicts to the fact that B has an open orbit.

Conversely, assume there is no open B-orbit. Let f and Σ as in 2.2, then the action of L on Σ factors
through A = L/(L,L), suppose all weight spaces of C[Σ] are one-dimensional, then we can choose weight
vectors f1, · · · , fr which generate C[Σ] as an algebra, choose f1, · · · , fr which generate C[Σ] as an algebra
and x0 ∈ Σ with fi(x0) ̸= 0 for all i, the algebra homomorphism C[Σ] → C[A] corresponds to the orbit
map a 7→ ax0 is injective, hence the orbit map is dominant, Ax0 is dense, a contradiction. We conclude we
can find non-propotional weight vectors f1, f2 with the same weight, and these functions can be uniquely
extended to B-semiinvariants on Xf . For f >> 0, we have two regular functions fNf1 and fNf2 with the
same weights, the G-modules M1 and M2 generated by them are simple, different but isomorphic. □

Theorem 2.6. Let P = ⊕λ∈ΛPλ be the decomposition of P with Pλ a simple G-module with lowest weight
−λ.

Then there are linear independent weights λ1, · · · , λr such that Λ = Nλ1 + · · ·+ Nλr.

Definition 2.7. Consider the pairs (∆,Ψ) where ∆ is the set of positive roots of a Levi subgroup L of G
and Ψ is the multiset of weights of representation V of L.

We define (∆,Ψ) to be multiplicity free if V is a multiplicity free representation of L. For a highest weight
χ ∈ Ψ, define Sχ = {a ∈ ∆ | ⟨χ, α∨⟩ > 0 }.

We have the following criterion on multiplicity freeness

Theorem 2.8. We have

• If Sχ = ∅, then (∆,Ψ) is multiplicity free if and only if Ψ is linearly independent.
• If there is a highest weight vector χ ∈ Ψ with Sχ ̸= 0, then we put ∆′ = ∆/Sχ and Ψ′ := Ψ\{χ−α| α ∈
Sχ}, then (∆,Ψ) is multiplicity free if and only if (∆′,Ψ′) is multiplicity free.

Example 2.9. For G = GLm(C)×GLn(C) acts on V := Cm ⊗ Cn, we assume m ≤ n, then

∆ = {ϵi − ϵj | 1 ≤ i < j ≤ m} ∪ {ϵ′i − ϵ′j | 1 ≤ i < j ≤ n}
and

Ψ = {ϵi + ϵ′j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
we can take χ = ϵ1 + ϵ′1, and use the previous theorem to reduce to the case m = 1 and show that
GLm(C)×GLn(C) action on V = Cm ⊗ Cn is multiplicity free of rank min(m,n).

The tables of multiplicity free representations can be found in Knop’s paper [Kno06].

2.3. Harmonic analysis on multiplicity free spaces. If V is multiplicity free and so is its dual space
V ∗. The coordinate ring D := C[V ∗] decomposes as ⊕λ∈ΛDλ, where Dλ is a simple G-module with highest
weight λ. The ring D can be identified with the set of constant coefficient differential operators, we are going
to denote the coordinate ring of V ⊕V ∗ by P ⊗D , taking invariants, we conclude (P ⊗D)G decomposes as

⊕λ,µ∈Λ(Pλ ⊗ Dµ)
G

we can think V ⊕ V ∗ as the cotangent bundle of V .
We have the multiplication map

m : P ⊗ D −→ D(V )

with D(V ) the algebra of linear differential operators on V .
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Definition 2.10. The functions (Pλ ⊗ Dλ)
G are called spherical functions of weight λ. The elements of

m(Pλ ⊗ Dλ)
G are called Cappelli operators of weight λ.

Every weight one spherical function Eλ determines the Capelli operator Dλ := m(Eλ).
Recall that the weight monoid Λ is freely generated by λ1, · · · , λr, let a∗ be the C-vector space spanned

by Λ, we are going to link (P ⊗ D)G and D(V )G with a∗.

Let V0 be the open B-orbit, we denote ϕf : V0 → V ∗ : v 7→ df(v)
f(v) , let a

∗(v) ⊂ V ⊕V ∗ be the set of points

(v, ϕχv) for χ runs through a∗.

Proposition 2.11. For every v ∈ V 0, the restriction to a∗(v) map defines an injective homomorphism

c : (P ⊗ D)G −→ C[a∗] : h 7→ h|a∗(v)

Let ρ ∈ t∗ be the half-sum of positive roots we get a homomorphism

p : (D(V ))G −→ C[a∗ + ρ] : D 7→ pD

where pD(χ) := cD(χ− ρ), this means D acts on Pλ via pD(λ+ ρ).

Theorem 2.12. There is a subgroup WV of the Weyl group W stabilizes a∗ + ρ such that the image of p is
C[a∗ + ρ]WV , the image of c is C[a∗]WV .

Corollary 2.13. The little Weyl group WV are reflections group on a∗.

Remark 2.14. There is a much more general version of this theorem, valid for all G-varieties. For smooth
affine G-varieties it states that the center of invariant differential operators is a polynomial ring which is
canonically isomorphic to the ring of invariants of a finite reflection group.

The polynomials pλ := c(Eλ) and pλ := p(Dλ) form a basis of C[a∗]WV and C[a∗ + ρ]WV .

3. Classification of smooth affine spherical varieties

The following is from the paper [KVS06]. We have the following corollary of Luna’s slice theorem

Theorem 3.1. Let X be a smooth affine spherical G-variety, then X = G ×H V where H is a reductive
subgroup of G such that G/H is spherical and V is a spherical H-module.

The G/H are homogeneous affine spherical varieties, spherical H-modules are the multiplicity free repre-
sentations that we studied in the previous section 2.5. Knop and Steirteghem uses a Lie algebra approach
to classify the smooth affine spherical varieties, and they have an axiomatic definition for what they called
spherical triples. Their main result is

Theorem 3.2. If G ×H V is a smooth affine spherical variety, then let (g′, h′) be the Lie algebra of the
derived subgroup of (G,H), we have (g′, h′, V ) is a spherical triple, and every spherical triple arises in this
way.

The result of Knop-Steirghem is not enough to deduce the Knop conjecture for smooth affine spherical
varieties which characterizes the isomorphism class of smooth affine spherical varieties using the weight
monoids.

Over algebraic closure, the spherical varieties are classified by spherical datum [Lun01], for the actual
application to representation theory, it will be important to know the spherical datum for the smooth affine
spherical varieties.
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