MOMENT MAPS AND GEOMETRIC INVARIANT THEORY

RUI CHEN

1. INTRODUCTION

This is a study note for Chris Woodward's article [Woo10].

2. Background knowledge

In this section, I will recall some background knowledge from symplectic geometric and geometric representation theory to state the Kempf-Ness theorem.

Let X be a smooth manifold, a symplectic form on X is a closed non-degenerate two form $\omega \in \Omega^2(X)$, a symplectic manifold is a manifold equipped with a symplectic two-form. The term symplectic is the Greek translation of the Latin word *complex* and was used by Weyl to distinguish the classical groups of linear symplectomorphisms resp. complex linear transformations.

Definition 2.1. For any symplectic manifold (X, ω) , let $\operatorname{Symp}(X, \omega) \subset \operatorname{Diff}(X)$ denote the group of symplectromorphisms and $\operatorname{Vect}^{s}(X) \subset \operatorname{Vect}(X)$ the Lie subalgebra of symplectic vector fields $v \in \operatorname{Vect}(X)$, $L_{v}\omega = 0$.

Any smooth function $H \in C^{\infty}(X)$ defines a symplectic vector field $H^{\#} \in \operatorname{Vect}^{s}(X)$ by $\iota_{H^{\#}}\omega = d H$, and the image of $C^{\infty}(X)$ in $\operatorname{Vect}^{s}(X)$ is the space $\operatorname{Vect}^{h}(X)$ of Hamiltonian vector fields.

Definition 2.2. Let K be a Lie group acting smoothly on a manifold X, the action is called *symplectic* if it preserves the symplectic form, that is $k_X \in \text{Symp}(X, \omega)$ for all $k \in K$. It is called *infinitesimally symplectic* if $\xi_X \in \text{Vect}^s(X)$ for all $\xi \in \mathfrak{k}$ and weakly Hamiltonian if $\xi_X \in \text{Vect}^h(X)$ for all $\xi \in \mathfrak{k}$.

A symplectic K-manifold is a symplectic manifold equipped with a symplectic action of K.

Definition 2.3. Let (X, ω) be a symplectic K-manifold, the action is called Hamiltonian if the map $\mathfrak{k} \to \operatorname{Vect}(X)$, $\xi \mapsto \xi_X$ lifts to an equivariant map of Lie algebras $\mathfrak{k} \to C^{\infty}(X)$, such a map is called a comment map. A moment map us an equivariant map $\Phi: X \to \mathfrak{k}^*$ satisfying

$$\omega_{\xi_X}\omega = -d\langle \Phi, \xi \rangle \ \forall \ \xi \in \mathfrak{k}$$

A Hamiltonian K-manifold is a datum (X, ω, Φ) consisting of a symplectic K-manifold (X, ω) equipped with an invariant closed two-form ω and a moment map Φ for the action.

Example 2.4. Let K = V be a vector space acting on $X = T^*V$ by translation, after identifying $\mathfrak{k} \to V$ and $\mathfrak{k}^* \to V^*$, a moment map is given by the projection $X \cong V \times V^{\vee} \to V^*$, (q, p) = p, by the ordinary momentum, hence the terminology *moment map*.

Definition 2.5. Let X be a Hamiltonian K-manifold with the moment map $\Phi : X \to \mathfrak{k}^*$, a K-Lagrangian submanifold is a K-invariant Lagrangian submanifold on which Φ vanishes, let (X_j, ω_j, Φ_j) be Hamiltonian K-manifolds for j = 0, 1, a K-Lagrangian correspondence is a K-Lagrangian submanifold of $X_0 \times X_1$.

Naturally, one want to study the quotient of a Hamiltonian *K*-manifold which should be an object in the symplectic geometry and satisfy a universal property for the morphisms in the equivariant symplectic category, however, it is easy to see that the most naive definition of the actual quotient doesn't work.

Definition 2.6. Let X be a Hamiltonian K-manifold with moment map $\Phi : X \to \mathfrak{k}^*$, we can define the symplectic quotient

$$X//K := \Phi^{-1}(0)/K$$

Date: September 2024.

Theorem 2.7. (Meyer, Marsden-Weinstein) Let X be a Hamiltonian K-manifold, if K acts freely and properly on $\Phi^{-1}(0)$ then X//K has the structure of a smooth manifold of dimension $\dim(X) - 2\dim(K)$ with a unique symplectic form ω_0 satisfying $i^*\omega = p^*\omega_0$ where $i: \Phi^{-1}(0) \to X$ and $p: \Phi^{-1}(0) \to X//K$ are the inclusion and projection.

Let's recall the Borel-Weil theorem: let G be a connected complex reductive group and let λ be any dominant weight for G and V_{λ} a simple-G module with highest weight λ , let P_{λ}^{-} be the opposite standard parabolic corresponding to λ , G/P_{λ}^{-} the generalized flag variety corresponding to λ , let $\mathcal{O}_{X}(\lambda) = G \times_{P_{\lambda}^{-}} \mathbb{C}_{\lambda}^{-}$, then we have the following theorem

Theorem 2.8. Let $X = G/P_{\lambda}^{-}$ with λ a weight, then $H^{0}(X, \mathcal{O}_{X}(\lambda)) \cong V_{\lambda}$ if λ is dominant and vanishes otherwise.

Example 2.9. For $G = SL_2(\mathbb{C})$, then $H^0(\mathcal{O}_X(\lambda))$ is the set of homogeneous polynomials in two variables of degree 2λ .

From the point of view of symplectic geometry, the Borel-Weil theorem says that the geometric quantization of a coadjoint orbit equipped with an integral symplectic form is a simple K-module. Indeed, let's denote Φ the moment map induced by the K-action on $\mathcal{O}_X(\lambda)$, then Φ maps X onto the coadjoint orbit $K\lambda$ through λ .

Let's now turn to the geometric invariant theory. Let G be a complex reductive group and X a G-variety, a polarization of X is an ample G-line bundle $\mathcal{O}_X(1) \to X$, its d-th tensor power is denoted by $\mathcal{O}_X(d)$, let

$$R(X) = \bigoplus_{d \ge 0} H^0(X, \mathcal{O}_X(d))$$

the action of X induces an action on R(X), we denote $R(X)^G \subset R(X)$ the subring of invariants and by $R(X)_{>0}^G$ the part of positive degree.

Definition 2.10. A point $x \in X$ is

- semistable if $s(x) \neq 0$ for some $s \in R(X)_{>0}^G$.
- polystable if x is semistable and $Gx \subset X^{ss}$ (the semistable locus).
- *stable* if x is polystable and has finite stabilizer.
- *unstable* if x is not semistable.

Example 2.11. Suppose $G = \mathbb{C}^{\times}$ acts on \mathbb{P}^2 by $g[z_0, z_1, z_2] = [g^{-1}z_0, z_1, gz_2]$, note $R(X)_d$ is spanned by $z_0^{d_0} z_1^{d_1} z_2^{d_2}$ with $d_0 + d_1 + d_2 = d$ which has weight $d_0 - d_2$ under \mathbb{C}^{\times} . The invariant sections are $d_0 = d_2$. Hence we have

- x is semistable iff $x \neq [1, 0, 0], [0, 0, 1].$
- x is polystable iff $x \in \{[0, 1, 0]\} \cup \{[z_0, z_1, z_2] \mid z_0 z_2 \neq 0\}.$ x is stable iff $x \in \{[z_0, z_1, z_2] \mid z_0 z_2 \neq 0\}.$

Definition 2.12. orbit-equivalence is the equivalence relation on X^{ss} defined by $x_0 \sim x_1$ iff $\overline{Gx_0} \cap \overline{Gx_1} \cap$ $X^{ss} \neq \emptyset.$

Theorem 2.13. (Mumford) Let X be a projective G-variety equipped with polarization $\mathcal{O}_X(1)$, then

- There exists a categorical quotient $\pi: X^{ss} \to X//G$.
- $\pi(X^s) \subset X//G$ is open and $\pi|X^s: X^s \to \pi(X^s)$ is a geometric quotient.
- The topological space underlying X//G is the space of orbits modulo the orbit-closure relation on X^{ss} .
- X//G is isomorphic to the projective variety with the coordinate ring $R(X)^G$.

3. Kempf-Ness Theorem

Theorem 3.1. Let K be a compact group and G its complexification, let V be a G-module equipped with a K-invariant Hermitian structure, let $X \subset \mathbb{P}(V)$ be a smooth projective G-variety, and let $\Phi : X \to \mathfrak{k}^*$ the Fubini moment map, then $\Phi^{-1}(0) \subset X^{ps}$ and the inclusion induces a homeomorphism $X//K \to X//G$.

The proof uses the properties of a Kempf-Ness function for each $v \in V - \{0\}$

$$\psi_v: K \setminus G \to \mathbb{R}, \ [g] \mapsto \log ||gv||^2/2$$

The proof of the Kempf-Ness theorem has a conceptual interpretation given by Guillemin-Sternberg in terms of geometric quantization.

Theorem 3.2. (Quantization commutes with reduction) Let X be a compact Hamiltonian K-manifold with moment map $\Phi: X \to \mathfrak{k}^*$, polarization $\mathcal{O}_X(1) \to X$ and a compatible K-invariant Kahler structure J such that K acts freely on the zero level set $\Phi^{-1}(0)$ and let $R(X)_d$ denote the space of sections of $\mathcal{O}_X(d)$, then for each $d \ge 0$ there is a canonical isomorphism

$$o: R(X)_d^K \to R(X//K)_d$$

Guillemin-Sternberg also proved "quantization commutes with reduction" for another class of Hamiltonian actions for which there exists a good quantization scheme, namely the cotangent bundles.

4. Moment polytopes

According to the work of Atiyah, Guillemin-Sternberg and Kirman the quotient of the image of the moment map is convex.

Let X be a Hamiltonian K-manifold with moment map Φ , then the moment image of X is $\Phi(X) \subset \mathfrak{k}$ and the quotient

$$\Delta(X) := \Phi(X) \subset \mathfrak{k}^*/K$$

can be identified with a subset of the convex cone $\mathfrak{t}^*_+ \cong \mathfrak{k}^*/K$.

Example 4.1. If $X = \mathbb{P}^1$ with $G = U(1)^2$ acts by the standard representation, then the moment image is the standard *n*-simplex

$$\Phi(X) = \{ (\nu_1, \nu_2) \in \mathbb{R}^2_{\geq 0} \mid \nu_1 + \nu_2 = 1 \}$$

To describe the moment polytope, we will introduce the following definition

Definition 4.2. For $\lambda \in \mathfrak{k}^*$, we will call the quotient

$$X//_{\lambda}K := \Phi^{-1}(K\lambda)/K = (\mathcal{O}_{\lambda}^{-} \times X)//K$$

the symplectic quotient of X at λ .

Proposition 4.3. Let X be a polarized projective G-variety and λ a dominant weight, then $R(X//_{\lambda}G)_d = Hom_G(V_{d\lambda}, R(X)_d)$ for any $d \ge 0$.

Proof. This follows from the Borel-Weil theorem and the Kempf-Ness theorem:

$$R(X//_{\lambda}K)_{d} = R(K\lambda^{-} \times X)_{d}^{K}$$
$$= (V_{d\lambda}^{\vee} \otimes R(X)_{d})^{K}$$
$$= \operatorname{Hom}_{K}(V_{d\lambda}, R(X)_{d})$$

Lemma 4.4. We have $\Delta(X) = \{\lambda \mid X//_{\lambda} K \neq 0\}$ is the set of λ for which the shifted symplectic quotient $X//_{\lambda}K$ is non-empty.

This lemma tells us that the moment polytope $\Delta(X)$ is the classical analog of the simple modules appearing in a *G*-module.

Theorem 4.5. Let K be a compact, connected Lie group and X a compact connected Hamiltonian Kmanifold, then $\Delta(X)$ is a convex polytope. If K is abelian, then $\Delta(X)$ is the convex hull of image $\Phi(X^K)$ of the fixed point set X^K of K.

References

[Woo10] Chris Woodward. Moment maps and geometric invariant theory. Les cours du CIRM, 1(1):55–98, 2010.