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1. Introduction

This is a study note for Chris Woodward’s article [Woo10].

2. Background knowledge

In this section, I will recall some background knowledge from symplectic geometric and geometric repre-
sentation theory to state the Kempf-Ness theorem.

Let X be a smooth manifold, a symplectic form on X is a closed non-degenerate two form ω ∈ Ω2(X), a
symplectic manifold is a manifold equipped with a symplectic two-form. The term symplectic is the Greek
translation of the Latin word complex and was used by Weyl to distinguish the classical groups of linear
symplectomorphisms resp. complex linear transformations.

Definition 2.1. For any symplectic manifold (X,ω), let Symp(X,ω) ⊂ Diff(X) denote the group of symplec-
tomorphisms and Vects(X) ⊂ Vect(X) the Lie subalgebra of symplectic vector fields v ∈ Vect(X), Lvω = 0.

Any smooth function H ∈ C∞(X) defines a symplectic vector field H# ∈ Vects(X) by ιH#ω = d H, and

the image of C∞(X) in Vects(X) is the space Vecth(X) of Hamiltonian vector fields.

Definition 2.2. Let K be a Lie group acting smoothly on a manifold X, the action is called symplectic if it
preserves the symplectic form, that is kX ∈ Symp(X,ω) for all k ∈ K. It is called infinitesimally symplectic

if ξX ∈ Vects(X) for all ξ ∈ k and weakly Hamiltonian if ξX ∈ Vecth(X) for all ξ ∈ k.
A symplectic K-manifold is a symplectic manifold equipped with a symplectic action of K.

Definition 2.3. Let (X,ω) be a symplectic K-manifold, the action is called Hamiltonian if the map
k → Vect(X), ξ 7→ ξX lifts to an equivariant map of Lie algebras k → C∞(X), such a map is called a
comoment map. A moment map us an equivariant map Φ : X → k∗ satisfying

ιξXω = −d⟨Φ, ξ⟩ ∀ ξ ∈ k

A Hamiltonian K-manifold is a datum (X,ω,Φ) consisting of a symplectic K-manifold (X,ω) equipped
with an invariant closed two-form ω and a moment map Φ for the action.

Example 2.4. Let K = V be a vector space acting on X = T ∗V by translation, after identifying k → V
and k∗ → V ∗, a moment map is given by the projection X ∼= V × V ∨ → V ∗, (q, p) = p, by the ordinary
momentum, hence the terminology moment map.

Definition 2.5. Let X be a Hamiltonian K-manifold with the moment map Φ : X → k∗, a K-Lagrangian
submanifold is a K-invariant Lagrangian submanifold on which Φ vanishes, let (Xj , ωj ,Φj) be Hamiltonian
K-manifolds for j = 0, 1, a K-Lagrangian correspondence is a K-Lagrangian submanifold of X−

0 ×X1.

Naturally, one want to study the quotient of a Hamiltonian K-manifold which should be an object in
the symplectic geometry and satisfy a universal property for the morphisms in the equivariant symplectic
category, however, it is easy to see that the most naive definition of the actual quotient doesn’t work.

Definition 2.6. Let X be a Hamiltonian K-manifold with moment map Φ : X → k∗, we can define the
symplectic quotient

X//K := Φ−1(0)/K
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Theorem 2.7. (Meyer, Marsden-Weinstein) Let X be a Hamiltonian K-manifold, if K acts freely and
properly on Φ−1(0) then X//K has the structure of a smooth manifold of dimension dim(X)−2dim(K) with
a unique symplectic form ω0 satisfying i∗ω = p∗ω0 where i : Φ−1(0) → X and p : Φ−1(0) → X//K are the
inclusion and projection.

Let’s recall the Borel-Weil theorem: let G be a connected complex reductive group and let λ be any
dominant weight for G and Vλ a simple-G module with highest weight λ, let P−

λ be the opposite standard

parabolic corresponding to λ, G/P−
λ the generalized flag variety corresponding to λ, let OX(λ) = G×P−

λ
C−

λ ,

then we have the following theorem

Theorem 2.8. Let X = G/P−
λ with λ a weight, then H0(X,OX(λ)) ∼= Vλ if λ is dominant and vanishes

otherwise.

Example 2.9. For G = SL2(C), then H0(OX(λ)) is the set of homogeneous polynomials in two variables
of degree 2λ.

From the point of view of symplectic geometry, the Borel-Weil theorem says that the geometric quanti-
zation of a coadjoint orbit equipped with an integral symplectic form is a simple K-module. Indeed, let’s
denote Φ the moment map induced by the K-action on OX(λ), then Φ maps X onto the coadjoint orbit Kλ
through λ.

Let’s now turn to the geometric invariant theory. Let G be a complex reductive group and X a G-variety,
a polarization of X is an ample G-line bundle OX(1) → X, its d-th tensor power is denoted by OX(d), let

R(X) = ⊕d≥0 H
0(X,OX(d))

the action of X induces an action on R(X), we denote R(X)G ⊂ R(X) the subring of invariants and by
R(X)G>0 the part of positive degree.

Definition 2.10. A point x ∈ X is

• semistable if s(x) ̸= 0 for some s ∈ R(X)G>0.
• polystable if x is semistable and Gx ⊂ Xss (the semistable locus).
• stable if x is polystable and has finite stabilizer.
• unstable if x is not semistable.

Example 2.11. Suppose G = C× acts on P2 by g[z0, z1, z2] = [g−1z0, z1, gz2], note R(X)d is spanned by

zd0
0 z

d1
1 z

d2
2 with d0 + d1 + d2 = d which has weight d0 − d2 under C×. The invariant sections are d0 = d2.

Hence we have

• x is semistable iff x ̸= [1, 0, 0], [0, 0, 1].
• x is polystable iff x ∈ {[0, 1, 0]} ∪ {[z0, z1, z2] | z0z2 ̸= 0}.
• x is stable iff x ∈ {[z0, z1, z2] | z0z2 ̸= 0 }.

Definition 2.12. orbit-equivalence is the equivalence relation on Xss defined by x0 ∼ x1 iff Gx0 ∩ Gx1 ∩
Xss ̸= ∅.

Theorem 2.13. (Mumford) Let X be a projective G-variety equipped with polarization OX(1), then

• There exists a categorical quotient π : Xss → X//G.
• π(Xs) ⊂ X//G is open and π| Xs : Xs → π(Xs) is a geometric quotient.
• The topological space underlying X//G is the space of orbits modulo the orbit-closure relation on
Xss.

• X//G is isomorphic to the projective variety with the coordinate ring R(X)G.

3. Kempf-Ness theorem

Theorem 3.1. Let K be a compact group and G its complexification, let V be a G-module equipped with a
K-invariant Hermitian structure, let X ⊂ P(V ) be a smooth projective G-variety, and let Φ : X → k∗ the
Fubini moment map, then Φ−1(0) ⊆ Xps and the inclusion induces a homeomorphism X//K → X//G.
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The proof uses the properties of a Kempf-Ness function for each v ∈ V − {0}
ψv : K\G→ R, [g] 7→ log||gv||2/2

The proof of the Kempf-Ness theorem has a conceptual interpretation given by Guillemin-Sternberg in
terms of geometric quantization.

Theorem 3.2. (Quantization commutes with reduction) Let X be a compact Hamiltonian K-manifold with
moment map Φ : X → k∗, polarization OX(1) → X and a compatible K-invariant Kahler structure J such
that K acts freely on the zero level set Φ−1(0) and let R(X)d denote the space of sections of OX(d), then for
each d ≥ 0 there is a canonical isomorphism

ρ : R(X)Kd → R(X//K)d

Guillemin-Sternberg also proved ”quantization commutes with reduction” for another class of Hamiltonian
actions for which there exists a good quantization scheme, namely the cotangent bundles.

4. Moment polytopes

According to the work of Atiyah, Guillemin-Sternberg and Kirman the quotient of the image of the
moment map is convex.

Let X be a Hamiltonian K-manifold with moment map Φ, then the moment image of X is Φ(X) ⊂ k and
the quotient

∆(X) := Φ(X) ⊂ k∗/K

can be identified with a subset of the convex cone t∗+
∼= k∗/K.

Example 4.1. If X = P1 with G = U(1)2 acts by the standard representation, then the moment image is
the standard n-simplex

Φ(X) = {(ν1, ν2) ∈ R2
≥0 | ν1 + ν2 = 1 }

To describe the moment polytope, we will introduce the following definition

Definition 4.2. For λ ∈ k∗, we will call the quotient

X//λK := Φ−1(Kλ)/K = (O−
λ ×X)//K

the symplectic quotient of X at λ.

Proposition 4.3. Let X be a polarized projective G-variety and λ a dominant weight, then R(X//λG)d =
HomG(Vdλ, R(X)d) for any d ≥ 0.

Proof. This follows from the Borel-Weil theorem and the Kempf-Ness theorem:

R(X//λK)d = R(Kλ− ×X)Kd

= (V ∨
dλ ⊗R(X)d)

K

= HomK(Vdλ, R(X)d)

□

Lemma 4.4. We have ∆(X) = {λ | X//λ K ̸= 0} is the set of λ for which the shifted symplectic quotient
X//λK is non-empty.

This lemma tells us that the moment polytope ∆(X) is the classical analog of the simple modules appearing
in a G-module.

Theorem 4.5. Let K be a compact, connected Lie group and X a compact connected Hamiltonian K-
manifold, then ∆(X) is a convex polytope. If K is abelian, then ∆(X) is the convex hull of image Φ(XK)
of the fixed point set XK of K.
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