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1. Introduction

The work of Waldspurger is devoted to a very deep study of the automorphic form on SL2, the main
tool is the correspondence between the autormophic forms on SL2 and automorphic forms on PGL2, this
correspndence was first discovered by Shintani and Niwa using the Weil representation, an ealier approach
to this correspondence, based on L-functions, was suggested by Shimura.

R.Howe has outlined a general theory of duality correspondence based on the use of Weil representation.
He has introduced the general notion of a dual reductive pair and has defined both a local and global duality
correspondence. R.Howe has obtained many deep results in the general situation but many important
problems remains.

A systematic study of the duality correspondence for the simplest dual reductive pair SL2,PGL2 from the
poitn of view of representation theory has been carried out by Rallis and Schiffmann, Waldspurger refers in
many places to Rallis and Schiffman, and in a way Waldspurger’s work is a continuation of that of Rallis
and Schiffman. However, Waldspurger’s work contains many fundamental new ideas especially in the global
case.

Flicker has studied a correspondence between the automorphic forms of GL2 and those of GL2 using the
trace formula. He has in fact obtain a complete description of this correspondence, since SL2 is a subgroup
of GL2, there is a close connection between the automorphic forms of these two groups. Waldspurger has
used Flicker’s results in a substantial way to obtain his own results, however Waldspurger’s result for SL2 are
quite surprising and were not predicted from the results for GL2. It remains a mystery why the automorphic
forms on SL2 and GL2 behave so differently, for example the strong multiplicity one is true for GL2 but not
for SL2. Also the descent correspondence of automrophic forms from GL2 to GL2 has only a local obstruction
while the correspondence from PGL2 to SL2 has a global obstruction but no local obstruction.

In this note, following the article of Piatetski-Shapiro [PS83],we would like to summarize Waldspurger’s
work in the framework of representation theory, we will explain all of Waldspurger’s work except the one
deals with the Fourier coefficients of automorphic forms of half-integral weight.

2. Automorphic forms on SL2(A)

Let k be a global field, the adele group SL2(A) has a unique non-trivial two-fold covering SL2(A):

1 → {±1} → SL2(A) → SL2(A) → 1

there is a unique embedding of SL2(k) into SL2(A) such that it is compatible with the covering map SL2(A) →
SL2(A). Similarly, there is a embedding of N(A) into SL2(A), where N is the upper unipotent subgroup of
SL2.

Let A0 denote the space of genuine cuspidal functions on SL2(A), in particular if f ∈ A0, then

• f(ξγg) = ξf(g), ξ ∈ {±1}, γ ∈ SL2(k), g ∈ SL2(A).

•
∫
k\A f(

(
1 z
0 1

)
g) dz = 0.

Under the right translation, A0 decomposes into a countable number of irreducible subspaces, an irreducible
representation of SL2(A) which occurs in A0 is called a genuine automorphic cuspidal representation. Let

A00 denote the subspace of forms in A0 orthogonal to the Weil representations of SL2(A).
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Theorem 2.1. The multiplicity of an irreducible genuine automorphic cuspidal representation of SL2(A) in
A00 is one.

If ψ is a character of k\A and f ∈ A00, the ψ-Fourier coefficient of f is defined to be

fψ(g) =

∫
k\A

ψ(z)f(

(
1 z
0 1

)
g) dz, g ∈ SL2(A)

The multiplicity result follows from the uniqueness of Whittaker models for SL2(A) and the following result
of Waldspueger

Theorem 2.2. Let (σ, V ) be a genuine irreducible automrophic cuspidal representation of SL2(A), if v →
φ(v) for v ∈ V, φ(v) ∈ A00 is an embedding of (σ, V ) into A00, then the vanishing of the ψ-Fourier coefficient
φ(v)ψ depends only on (π, V ) as an abstract representation, and not on the embedding ψ.

Two irreducible genuine automorphic cuspidal representations of SL2(A), σ = ⊗v σv and σ′ = ⊗v σ′
v are

said to be nearly equivalent if σv = σ′
v for almost places v, let ℓ(σ) denote the set of irreducible genuine

automorphic cuspidal representations nearly equivalent to σ. In order to determine the set ℓ(σ), Waldspurger

has defined an involution σ → σW whenever σ is a discrete series representation of SL2(kv). Define

Σ = {v | σv is a discrete series representation}
If M ⊂ Σ and |M| is even, put σM = ⊗ σM

v and denote

σMv =

{
σv v /∈ M

σWv v ∈ M

the relationship of σM and ℓ(σ) is given in the following theorem

Theorem 2.3. Any representation in ℓ(σ) is of the form σM for some M ⊆ Σ.

3. The oscillator representation over a local field

Let k be a local field and let X be a 2n-dimensional vector space over k with a symplectic structure ⟨ , ⟩.
If X = X1 ⊕ X2 is a polarization of X, let P be the subgroup of Sp(⟨ , ⟩) which preserves X2, if ψ is a

non-trivial character of k, let ωψ be the oscillator representation of Sp2n(k), the double cover of Sp2n(k).
Let us consider a 3-dimensional vector space M = {m ∈ M2(k) | tr(m) = 0}, PGL2 acts on M by

conjugation, this conjugation preserves the symplectic form q(x) = −det(x), let Y be a 2-dimensional vector
space over k with symplectic form ⟨ , ⟩, define a symplectic vector space X by X = M⊗k Y

⟨m1 ⊗ y1, m2 ⊗ y2⟩ = (m1,m2)⟨y1, y2⟩
since PGL2 and SL2 preserve the forms ( , ) and ⟨ , ⟩, there is a natural embedding of PGL2×SL2 into Sp6.
Our aim is to use the oscillator representation of Sp6 to define a correspondence between certain irreducible
representation of PGL2 and certain irreducible representations of SL2. Waldspurger has given a different
definition of the correspondence based on explicit integral formulas.

Let T be a subgroup of G = PGL2, and let N be a subgroup of SL2, let α and β be characters of T and
N. Let X = X1 ⊕X2 be a polarization of X such that T×N ⊂ P.

Let us suppose that x1 ∈ X1 is a vector such that ϕ 7→ ϕ(x1) transforms T×N under α× β

ωψ(t, n) · ϕ(x1) = α(t)β(n)ϕ(x1)

Let (π, V ) be an irreducible admissible representation of PGL2 and let us assume that ℓ is a linear functional
on V such that ℓ(π(t)v) = α−1(t)ℓ(v), if the integral

(3.1) F(h) =

∫
T\G

(ωψ(g, h) · ϕ)(x1)ℓ(π(g)v) dg

converges, then F (nh) = β(n)F (h). Let W be the space of all the functions F obtained in this fashion
by varying ϕ and v, then SL2 acts on W by right translation. We shall denote this function by θ(π, ψ).
Conversely, given an irreducible admissible representation σ of SL2, it is possible to define a representation
θ(σ, ψ) of PGL2, which may be zero.

Waldspurger has proved the following theorem
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Theorem 3.1. Let T and N as above. If (π, V ) ( respectively (σ,V)) is an irreducible admissible representa-
tion of PGL2 ( respectively SL2), then the representation of SL2 ( respectively PGL2) obtained from the above
integral formula is irreducible admissible and depends only on the additive character ψ. It is independent of
the choice of the subgroups T and N and the characters α and β.

4. The θ-correspondence

Let k be a global field, we shall use the same notation globally as was previously introduced locally. The
global Weil representation ωψ acts on S(X1(A)), let X = X1 ⊕ X2 be the standard polarization of X and
identify X1 with M, for ϕ ∈ S(X1(A))

θϕψ(g, h) =
∑

x∈X1(k)

ωψ(g, h) · ϕ(x) g ∈ G(A), h ∈ SL2(A)

here G is either PGL2 or PD×, it is well known that θϕψ is an automorphic function on G(A) × SL2(A) of
moderate growth.

Let π be an irreducible automorphic cuspidal representation of G(A), if f ∈ π ⊂ A0, put

φ(h) =

∫
G(k)\G(A)

θϕψ(g, h) f(g) dg

the fact that θϕψ is a function of moderate growth means that the integral is well-defined, and φ is a function
on SL2(k)\SL2(A). In the case G = PD×, we also assume that

∫
G(k)\G(A) f(g) dg = 0.

Proposition 4.1. φ is a cusp form.

This follows from the definition.

Theorem 4.2. The θ-correspondence π → θ(π, ψ) is compatible with the local correspondence.

Proof. Let π be an irreducible automorphic cuspidal representation of G(A), for f ∈ π and ϕ ∈ S(X,A), let
φ be the cusp form

φ(h) =

∫
G(k)\G(A)

θϕψ(g, h) f(g) dg

if a ∈ k×, then a calculation similar to the one used to φ is a cusp form shows

φa(1) :=

∫
k\A

φ(

(
1 z
0 1

)
)ψ(az) dz

=

∫
Ta(A)\G(A)

ωψ(g) · ϕ(xa)
∫
Ta(k)\Ta(A)

f(tg) dtdg

here xa is any element in X such that q(xa) = a, Ta is the stabilizer of xa · Ta is a torus in G. Put

U(f, g) =

∫
Ta(t)\Ta(A)

f(tg) dt

then the function U(f,−) satisfies U(f, tg) = U(f, g) and the linear function ℓ : f → U(f, 1) is a linear
functional for which ℓ(π(t)f) = ℓ(f). Locally such a functional is unique, hence we have

U(f,−) = ⊗Uv(−)

where Uv is a function on Gv such that Uv(tvgv) = Uv(gv), under the right translation of Gv on Tav\Gv, Uv
generates a representation equivalent to πv, we have the following formula

φa(h) =

∫
Ta(A)\G(A)

ωψ(g, h) · ϕ(xa)U(f, g) dg

if U is an element in the space generated by Uv and if

Wψa(h) :=

∫
Ta\Gv

ωϕ,v(g, h) · ϕ(xa)U(g) dg
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then Wψa(

(
1 z
0 1

)
h) = ψv(za)Wψa(h), compare this with the formula for F (3.1) where we used to define

the local correspondence gives the result we need. □

Theorem 4.3. The θ-correspondence is a 1 − 1 correspondence between certain automorphic cuspidal ir-
reducible representation of G(A) and certain genuine automorphic cuspidal irreducible representations of

SL2(A).

Theorem 4.4. Let G = PGL2, suppose σ ∈ A00 and π is an automorphic cuspidal representation of
PGL2(A), then

• θ(σ, ψ−1) ̸= 0 if and only if σ possesses a nonvanishing ψ-Fourier coefficient.
• θ(π, ψ) ̸= 0 if and only if L(π, 12 ).

Proof. In order to prove this theorem, we must use a polarization for which the usual unipotent subgroups
of PGL2(A) and SL2(A) lie inside P. Let M be the trace zero element of M2(k), let Y be a symplectic vector
space over k with form ⟨ , ⟩ and symplectic basis y1, y2. Let e1, e2, e3 be a basis of M such that q has the

matrix

0 0 1
0 1 0
1 0 0

, put X1 = e1 ⊗Y+ e2 ⊗ ky1, x2 = e3 ⊗Y+ e2 ⊗ ky2. Suppose σ is an irredicible genuine

representation of SL2(A) lying in A00, for φ ∈ σ, we let

f(g) =

∫
SL2(k)\SL2(A)

θϕψ(g, h) φ(h) dh

we can identify X1 with Y⊕ k, and we can choose ϕ with the form ϕ = ϕ1 ·ϕ2, for ϕ1 ∈ S(Y(A)), ϕ2 ∈ S(A),
then

θϕψ(1, h) = F1(h)F2(h)

where
F1(h) =

∑
y∈Yk

ϕ1(yh)

and
F2(h) =

∑
t∈k

ω′
ψ(h) · ϕ2(t)

we have

f(1) =
∑
t∈k

∫
NA\SL2(A)

ϕ1(y2h)ω
′
ψ(h) · ϕ2(t)φψt2 (h) dh

if θ(σ, ψ−1) ̸= 0, then there exists a t for which φψt2 ̸= 0, this means σ possesses a non-zero ψ-Fourier

coefficient.
Now suppose σ possesses a non-zero ψ-Fourier coefficient, then we let

ft(1) =

∫
NA\SL2(A)

ωψ(h)ϕ(y2, t) φt2(h) dh

Let Z be the upper unipotent subgroup of PGL2 then for z ∈ Z

ωψ(z) · ϕ(y2, t) = ψ(tz)ϕ(y2, t)

it follows from this formula that ft(1) is a Fourier coefficient of f , therefore if φψ ̸= 0 then ft(1) ̸= 0 and so
θ(σ, ψ−1) ̸= 0.

To prove the second part of the theorem, we use the standard polarization, if σ = θ(π, ψ) ̸= 0 then
θ(σ, ψ−1) = π, since σ has a non-zero Fourier coefficient, the formula for φa(1) in 4.2 shows that∫

Tk\TA

f(t) dt ̸= 0

From the Jacquet-Langlands theory of L-functions, it is known that for appropriate choice of f

L(π, s) =

∫
Tk\TA

f(t) |t|s− 1
2 dt
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hence L(π, 12 ) =
∫
Tk\TA

f(t) dt ̸= 0. Conversely, if L(π, 12 ) ̸= 0, then
∫
Tk\TA

f(t) dt ̸= 0 and hence

θ(π, ψ) ̸= 0. □

5. Non-vanishing of a Fourier coefficient

We have the following theorem determine when σ ∈ A00 admits a nonzero ψ-Fourier coefficient

Theorem 5.1. Let σ = ⊗vσv ⊂ A00, then σ admits a non-zero ψ-Fourier coefficient if and only if

• at each place of v, there is a linear functional ℓv on the space W of σv such that

ℓv(σ

(
1 t
0 1

)
ω) = ψv(t)ℓv(ω)

• Lψ(σ,
1
2 ) ̸= 0.
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