A CONJECTURE ON WHITTAKER-FOURIER COEFFICIENTS OF CUSP FORMS

RUI CHEN

1. Introduction

This is a study note for the Lapid-Map paper, it sharpens the conjectures of Sakellaridis-Venkatesh in the case at hand [LM15].

2. The conjecture

Let G be a quasisplit reductive group over a number field F and \mathbb{A} the ring of adeles of F, let B be a Borel subgroup of G defined over F and N the unipotent radical of B and fix a non-degenerate character ψ_N of $N(\mathbb{A})$, trivial on N(F), for a cusp form φ of $G(F)\backslash G(\mathbb{A})$, we consider the Whittaker-Fourier coefficient

$$\mathcal{W}^{\psi_N}(\varphi) := \int_{N(F)\backslash N(\mathbb{A})} \varphi(n)\psi_N(n)^{-1} dn$$

If π is an irreducible cuspidal representation then W if non-zero gives a realization of π in the space of Whittaker functions on $G(\mathbb{A})$ which by local multiplicity one depends only on π as abstract representation.

For the general linear group, the theory of Rankin-Selberg integrals, developed in higher rank expresses among other things, the Pettersson inner product in terms of a canonical linear product on the local Whittaker model of π .

The integral

$$\int_{N(\mathbb{A})} (\pi(n)\varphi, \varphi^{\vee}) \ \psi_N(n)^{-1} \ dn$$

doesn't converge, even the local integral

$$I_v(\varphi, \varphi^{\vee}) = \int_{N(F_v)} (\pi_v(n_v)\varphi_v, \varphi_v^{\vee})_v \ \psi_N(n_v)^{-1} \ dn_v$$

doesn't converge unless π_v is square integrable. However, it is possible to regularize I_v and by the Casselman-Shalika formula, almost everywhere we have

$$I_v(\varphi_v, \varphi_v^{\vee}) = \frac{\Delta_{G,v}(1)}{L(1, \pi_v, \mathrm{Ad})}$$

if φ_v , φ_v^{\vee} are unramified vectors with $(\varphi_v, \varphi_v^{\vee}) = 1$. By local multiplicity one there exists a constant $c_{\pi}^{\psi_N}$ depending on π such that

$$\mathcal{W}^{\psi_N}(\varphi)W^{\psi_N^{-1}}(\varphi^\vee) = (c_\pi^{\psi_N}\operatorname{vol}(G(F)\backslash G(\mathbb{A})^1))^{-1} \frac{\Delta_G^S(s)}{L^S(s,\pi,\operatorname{Ad})}|_{s=1} \prod_{v\in S} I_v(\varphi_v,\varphi_v^\vee)$$

for all $\varphi = \otimes \varphi_v \in \pi$ and $\varphi^{\vee} = \otimes_v \varphi_v^{\vee} \in \pi^{\vee}$ and all S sufficiently large.

The Rankin-Selberg theory for GL_n alluded to above shows that $c_N^{\psi_N}=1$ for any irreducible cuspidal representations of GL_n . It is desirable to extend this relation to other quasi-split groups. The first proble is that $c_{\pi}^{\psi_N}$ depends on the autormorphic realization of π .

There is a notion of ψ_N -generic spectrum as defined by Piatetski-Shapiro, it is orthogonal complement to the L^2 autormophic forms with vanishing Whittaker functions. We denote this space by $L^2_{disc,\psi_N}(G(F)\backslash G(\mathbb{A})^1)$, this space is multiplicity free and is meaningful to study $c^{\psi_N}_{\pi}$ for irreducible constituents of the ψ_N -generic spectrum.

Date: September 2025.

1

Another more speculative way is to admit Arthur conjectures, namely a canonical decomposition

$$L^2_{disc}(G(F)\backslash G(\mathbb{A})^1) = \hat{\oplus}_{\phi} \overline{\mathcal{H}_{\phi}}$$

according to elliptic Arthur parameters.

For the group $G = GL_n$ the space \mathcal{H}_{ϕ} are always irreducible and \mathcal{H}_{ϕ} is cuspidal if and only if it is generic and happens if and only if ϕ has trivial SL_2 -type. For other groups, the reducibility of \mathcal{H}_{ϕ} is measured to a large extent by a certain finite group S_{ϕ} attached to ϕ . In general, we expect that if ϕ is of Ramanujan type then $\mathcal{H}_{\phi} \cap L^2_{cusp,\psi_N}(G(F)\backslash G(\mathbb{A})^1)$ is irreducible. We denote the representation on this space by $\pi^{\psi_N}(\phi)$, if ϕ is not of Ramanujan type then \mathcal{W}^{ψ_N} vanishes on \mathcal{H}_{ϕ} .

Conjecture 2.1. For any elliptic Arthur parameter ϕ of Ramanujan type we have $c_{\pi^{\psi_N}(\phi)}^{\psi_N} = |\mathcal{S}_{\phi}|$.

Lemma 2.2. Suppose that $\tilde{\pi}$ is an irreducible cuspidal ψ_N -generic representation of $\widetilde{G}(\mathbb{A})$ realized on $V_{\tilde{\pi}}$. Assume that the space of $\tilde{\pi} \otimes \omega$ is orthogonal to that of $\tilde{\pi}$ for any $\omega \notin X(\tilde{\pi})$ (this condition is satisfied if the cuspidal multiplicity of $\tilde{\pi}$ is one.) Let $V'_{\tilde{\pi}} = \{\varphi|_{G(\mathbb{A})} : \varphi \in V_{\tilde{\pi}}\}$. Then

- $V'_{\tilde{\pi}}$ is the direct sum of distinct irreducible cuspidal representations of $G(\mathbb{A})$.
- There is a unique ψ_N -generic irreducible constituent of $V'_{\tilde{\pi}}$.
- If π is the ψ_N -generic irreducible constituent of $V'_{\tilde{\pi}}$ then $c^{\psi_N}_{\pi} = |X(\tilde{\pi})|c^{\psi_N}_{\tilde{\pi}}$.

Corollary 2.3. Suppose that $\tilde{\pi}$ is a cuspidal irreducible autormorphic representation of GL_m realized on $V_{\tilde{\pi}}$, let π be the unquie irreducible constituent of $SL_m(\mathbb{A})$ on

$$V'_{\tilde{\pi}} = \{ \varphi |_{SL_m(\mathbb{A})} : \varphi \in V_{\tilde{\pi}} \}$$

on which W^{ψ_N} is nonzero. Then we have $c_{\pi}^{\psi_N} = |X(\tilde{\pi})|$ where $X(\tilde{\pi})$ is the group of Hecke characters ω such

We remark that every irreducible constituent of $V'_{\tilde{\pi}}$ is generic with respect to some non-degenerate character of $N(\mathbb{A})$, we also remark that in the case SL_2 we have multiplicity one for SL_2 , but this is not true

For any irreducible cuspidal representation $\tilde{\pi}$ of \tilde{G} we denote by $X(\tilde{\pi})$ the group of characters of $\tilde{G}(\mathbb{A})$ trivial $G(\mathbb{A})\widetilde{G}(F)$ such that $\widetilde{\pi}\otimes\omega=\widetilde{\pi}$. The group \widetilde{G} will be the product of restriction of scalars of general linear groups, in particular

- \widetilde{G} has multiplicity one.
- $\begin{array}{l} \bullet \ c_{\tilde{\pi}}^{\psi_N} = 1. \\ \bullet \ c_{\pi}^{\psi_N} = |X(\tilde{\pi})| \ \text{for the ψ_N-generic constituent π of $V_{\tilde{\pi}}'$.} \end{array}$

Introduce two equivalence relations on the set of irreducible cuspidal representations of $\widetilde{G}(\mathbb{A})$: $\pi_1 \sim \pi_2$ (resp. $\pi_1 \sim_{\omega} \pi_2$) if there exists a character ω of $G(F)G(\mathbb{A}) \setminus G(\mathbb{A})$ (resp. $G(\mathbb{A}) \setminus G(\mathbb{A})$) such that $\pi_2 \cong \pi_1 \otimes \omega$, then G has multiplicity one if and only if the two equivalence relations coincide.

3. Example

Consider the case $G = SL_2$, we take $\widetilde{G} = GL_2$ and $t_{\widetilde{G}}$ to be the adjoint representation. Here $X(\widetilde{\pi})$ is as in corollary 2.3, there are three possibilities

- $|X(\tilde{\pi})| = 1$.
- $|X(\tilde{\pi})| = 2$.
- $|X(\tilde{\pi})| = 4$.

Let Π be the adjoint lifting of $\tilde{\pi}$ to GL_3 . In the first case, $\tilde{\pi}$ is not dihedral and Π is cuspidal. In the second case, let E be the quadratic extension of F defined by the non-trivial element ω of $X(\tilde{\pi})$ and let θ be the Galois involution of E/F, then $\tilde{\pi} = AI_{E/F}(\mu)$ for some Hecke character μ of \mathbb{A}_E^* , $\theta(\mu)/\mu$ is not quadratic and $\Pi = \omega \boxplus AI_{E/F}(\theta(\mu)/\mu)$. Finally in the third case let $X(\tilde{\pi}) = \{1, \omega_1, \omega_2, \omega_3\}$ defines a biquadratic extension K of F and $\Pi = \omega_1 \boxplus \omega_2 \boxplus \omega_3$.

In all cases we have $|X(\tilde{\pi})| = |S_{\tilde{\pi}}|$.

References

 $[LM15] \ \ \text{Erez Lapid and Zhengyu Mao. A conjecture on Whittaker-Fourier coefficients of cusp forms.} \ \textit{Journal of Number Theory}, \\ 146:448-505, \ 2015.$