WEYL INTEGRATION FORMULA

RUI CHEN

1. INTRODUCTION

This is my study note for Weyl's integration formula following Knapp's book [KK96].

2. Compact Lie groups

We have the following theorem on analytic aspect of the abstract representation of compact groups

Theorem 2.1. (Peter-Weyl theorem) If G is a compact group, then the linear span of all matrix coefficients for all finite dimensional irreducible representations of G is dense in $L^2(G)$.

Example 2.2. For $G = S^1$ which is abelian, every irreducible representation is 1-dimensional, the matrix coefficients are the function $e^{in\theta}$, the Peter-Weyl theorem in this case says that the finite linear combination of these functions are dense in $L^2(S^1)$. An equivalent formulation is that $\{e^{in\theta}\}_{n=-\infty}^{\infty}$ is an orthonormal basis of $L^2(S^1)$.

We have the following formula for characters of finite dimensional representations of complex semisimple Lie algebra

Theorem 2.3. (Weyl character formula) Let V be an irreducible finite dimensional representation of the complex semisimple Lie algebra \mathfrak{g} with highest weight λ , then

$$char(V) = d^{-1} \sum_{\omega \in W} \epsilon(\omega) e^{\omega(\lambda+\delta)}$$

here

$$d = e^{\delta} \prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})$$

Example 2.4. For the Lie algebra $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$, for $\lambda \in \mathfrak{h}^*$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\lambda(zh) = zn$, V_{λ} the highest weight λ representation, the Weyl character formula takes the form

char(
$$V_{\lambda}$$
) = $\frac{e^{\lambda+\delta} - e^{-(\lambda+\delta)}}{e^{\delta} - e^{-\delta}}$

Theorem 2.5. (Weyl character formula) Let G be a compact connected Lie group, let T be a maximal torus and $\Delta^+ = \Delta^+(\mathfrak{g}, \mathfrak{t})$ a positive system of simple roots. Let $\lambda \in \mathfrak{t}^*$ be analytically dominant and integral, then the character $\chi_{\Phi_{\lambda}}$ of the highest weight λ representation Φ_{λ} is given by

$$\chi_{\Phi_{\lambda}}(t) = \frac{\sum_{\omega \in W} \epsilon(\omega) \xi_{\omega(\lambda+\delta)-\delta}(t)}{\prod_{\alpha \in \Delta^{+}} (1 - \xi_{-\alpha}(t))}$$

Date: February 2024.

3. Weyl integration formula

We let G be a connected compact Lie group and T a maximal torus, we let G' and T' be the set of regular elements in G and T. We let \mathfrak{g}_0 and \mathfrak{t}_0 be the real Lie algebra of G and T.

Lemma 3.1. We have a surjective map ψ : $G/T \times T \to G$ by $\psi(\overline{g}, t) = gtg^{-1}$ and each member of G' has exactly |W(G,T)| preimages under ψ .

Then lemma 3.1, together with

$$|\det(d \ \psi)_{(g,t)}| = |\det(\mathrm{Ad}(t^{-1}) - 1)|_{\mathfrak{t}_0^{\perp}})| = \prod_{\alpha \in \Delta^+} |\xi_{\alpha}(t^{-1}) - 1|^2$$

gives us the following theorem

Theorem 3.2. (Weyl integration formula) Let T be a maximal torus of a compact connected Lie group G and let invariant measures are normalized on G, T, G/T so that

$$\int_{G} f(x) \, dx = \int_{G/T} (\int_{T} f(xt) \, dt) \, d(xT)$$

for all continuous function f on G. Then for every Borel function $F \ge 0$ on G we have

$$\int_{G} F(x) \, dx = \frac{1}{|W(G,T)|} \int_{T} (\int_{G/T} F(gtg^{-1})d(gT)) \, |D(t)|^2 \, dt$$

where $|D(t)|^2 = \prod_{\alpha \in \Delta^+} |1 - \xi_{\alpha}(t^{-1})|^2$.

This integration formula is the starting point for the analytic part of the representation theory for compact connected Lie groups.

Let's define $D(t) = \xi_{\delta}(t) \prod_{\alpha \in \Delta^+} (1 - \xi_{-\alpha}(t))$, then for any Borel function f constant on conjugacy classes we get

(3.1)
$$\int_{G} f(x)dx = \frac{1}{|W(G,T)|} |f(t)|D(t)|^{2} dt$$

here we take dx, dt, d(gT) to have total mass one.

For every $\lambda \in \mathfrak{t}^*$ dominant and analitically integral, we can define

$$\chi_{\lambda}(t) = \frac{\sum_{s \in W(G,T)} \epsilon(s)\xi_{s(\lambda+\delta)}(t)}{D(t)}$$

then χ_{λ} is W(G,T) invariant, and $\chi_{\lambda}(t)$ extends to a function χ_{λ} on G constant on conjugacy classes. Applying (3.1) with $f = |\chi_{\lambda}|^2$, we get

$$\int_G |\chi_\lambda|^2 \, dx = 1$$

Applying (3.1) with $f = \chi_{\lambda} \overline{\chi_{\lambda'}}$, we get

$$\int_G \ \chi_\lambda(x) \overline{\chi_{\lambda'}(x)} \ dx = 0$$

for $\lambda \neq \lambda'$.

Let χ be the character of a finite dimensional representation on G. On T, χ must be of the form $\sum_{\mu} \xi_{\mu}$, since $D(t)\chi(t)$ must be of the form $\sum_{v} n_{v}\xi_{v}(t)$, we can show further $\chi(t) = \sum_{\lambda} a_{\lambda}\chi_{\lambda}(t)$ with $a_{\lambda} \in \mathbb{Z}$, now from the integration result for χ_{λ} , we obtain

$$\int_G |\chi(x)|^2 dx = \sum_{\lambda} |a_{\lambda}|^2$$

for an irreducible character, from the Schur orthogonality relation, we can show the left hand side must be 1, so one a_{λ} is ± 1 and others are 0. Since χ is of the form ξ_{μ} , we must have $a_{\lambda} = 1$ for some λ . Hence every irreducible characters is of the form $\chi = \chi_{\lambda}$ for some λ .

This gives an *analytic proof* of the Weyl character formula 2.5. Using the Peter-Weyl theorem 2.1, we can see that no L^2 function on G that is constant on the conjugacy classes can be orthogonal to all irreducible

characters, this proves the existence of an irreducible representation corresponding to a given dominant analytically integral form as highest weight.

4. HARISH-CHANDRA'S WORK

Let G be a reductive Lie group, based on the result that the regular elements G' in G is contained in the G-conjugates of the Cartan subgroups of G, Harish-Chandra proves the following generalization of the Weyl integration formula for general reductive Lie groups

Theorem 4.1. Let G be a reductive Lie group and $(\mathfrak{h}_1)_0, \cdots, (\mathfrak{h}_r)_0$ a maxial set of nonconjugate θ stable Cartan subalgebras of \mathfrak{g}_0 , let H_i be the corresponding Cartan subgroups, let the invariant measure on H_j and G/H_j normalized so that

$$\int_{G} f(x) \, dx = \int_{G/H_j} \int_{H_j} f(gh) \, dh \, d(gH_j)$$

for all f compactly supported function on G, then for every Borel function $F \ge 0$ on G we have

$$\int_{G} F(x) \, dx = \sum_{j=1}^{r} \frac{1}{|W(G, H_j)|} \int_{H_j} \int_{G/H_j} F(ghg^{-1}) \, d(gH_j) |D_{H_j}(h)|^2 \, dh$$

where $|D_{H_j}(h)|^2 = \prod_{\alpha \in \Delta(\mathfrak{g},\mathfrak{h}_j)} |1 - \xi_\alpha(h^{-1})|.$

Harish-Chandra proves a generalization of the Peter-Weyl theorem 2.1 for general semisimple Lie groups. Harish-Chandra also proves a generalization of the Weyl character formula for discrete series representations for general semisimple Lie groups, the construction of the discrete series with given infinitesimal character is much harder.

References

[KK96] Anthony W Knapp and Anthony William Knapp. Lie groups beyond an introduction, volume 140. Springer, 1996.