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1. Introduction

This is a study note for the paper [HK14].

2. The space X

Let k′ be an unramified extension of a p-adic field k of odd residue characteristic and consider Hermitian
and unitary matrices with respect to k′/k, and denote by a∗ the conjugate transpose of a ∈ Mmn(k

′). Let
π be a prime element of k and q the cardinality of the residue field Ok/(π). We fix a unit ϵ ∈ O×

k for which
k′ = k(

√
ϵ).

We consider the unitary group

G = Gn = {g ∈ GL2n+1(k
′) | g∗j2n+1g = j2n+1}, j2n+1 =

0 · · · 1
· · ·

1 · · · 0


and the space X of unitary matrices in G

X = Xn = {x ∈ G | x∗ = x, Φxj2n+1(t) = (t2 − 1)n(t− 1)}

where Φy(t) is the characteristic polynomial of the matrix y. We note that X is a single G(k)-orbit containing

12n+1 over the algebraic closure k of k. The group G acts on X by

g · x = gxg∗ = gxj2n+1g
−1j2n+1, g ∈ G, x ∈ X

we fix a maximal compact subgroup K of G by

K = Kn = G ∩M2n+1(Ok′)

Proposition 2.1. There are precisely two G-orbits in Xn:

G · x0 =
⊔

λ∈Λ+
n , |λ| is even

K · xλ, G · x1 =
⊔

λ∈Λ+
n , |λ| is odd

K · xλ

where |λ| =
∑n

i=1 λi, x0 = 12n+1 and x1 = diag(π, 1, · · · , 1, π−1).

Proof. First we know that there are at most two G-orbits in Xn. We extend the k-automrophism ∗ of k′ to
an element of Γ = Gal(k/k) and the action of G on X to G(k) on X(k). We recall X(k) is a single G(k)-orbit
and set

H(k) = {h ∈ G(k) | h · 12n+1 = 12n+1}
then we can obtain

H(k) ∼= U(1n)(k)× U(12n+1)(k)

By the exact sequence of Γ-sets

1 −→ H(k) −→ G(k) −→ Xn(k) −→ 1

g 7−→ g · 12n+1

we have an exact sequence of pointed sets

1 −→ G · 12n+1 −→ Xn −→ H1(Γ, H(k)) −→ H1(Γ, G(k))

since H1(Γ, H(k)) → H1(Γ, G(k)) is a map from C2 × C2 to C2, it cannot be trivial, hence G · 12n+1 ̸= Xn,
hence there are least two G-orbits in Xn and thus exactly two G-orbits. □
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3. Main result

Theorem 3.1. A set of complete representations of K\X can be taken as

{xλ | λ ∈ Λ+
n }

where

xλ =

{
Diag(πλ1 , · · · , πλn , π−λn , · · · , π−λ1) if m = 2n

Diag(πλ1 , · · · , πλn , 1, π−λn , · · · , π−λ1) if m = 2n+ 1

Λ+
n = {λ ∈ Zn | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}

A spherical function on X is a K-invariant function on X which is a common eigenfunction with respect
to the common convolutive action of the Hecke algebra H(G,K), and a typical one is constructed by Poisson
transform from the relative invariants of a parabolic subgroup. We take the Borel subgroup B consisting of
upper triangular matrices in G.

We introduce a spherical function ω(x; s) on X by Poisson transform from relative B-invariants, for a
matrix g ∈ G, denote di(g) the determinant of lower right i by i block of g. Then di(x), 1 ≤ i ≤ n are
relative B-invariants on X associated with rational characters ψi of B where

di(p · x) = ψi(p)di(x), ψi(p) = Nk′/k(di(p)) (x ∈ X, p ∈ B)

For x ∈ X and s ∈ Cn, we consider the integral

ω(x; s) =

∫
K

|d(k · x)|s dk, |d(y)|s =
n∏

i=1

|di(y)|si

Then the right hand side is absolutely convergent for Res(si) ≥ 0, 1 ≤ i ≤ n and continued to be a rational
function of qs1 , · · · , qsn . Since di(x) are relative B-invariants on X such that

di(p · x) = ψi(p)di(x), ψi(p) = Nk′/k(di(p)) (p ∈ B, x ∈ X, 1 ≤ i ≤ n)

we see ω(x; s) is a spherical function X which satisfies

f ∗ ω(x; s) = λs(f)ω(x; s), f ∈ H(G,K)

λs(f) =

∫
B

f(p)Πn
i=1|ψi(p)|−siδ(p) dp

The Weyl group W of G relative to B acts on the rational characters of B, hence on z and s also. The
group W is generated by Sn which acts on z by permutation of indices and by τ such that

τ(z1, · · · , zn) = (z1, · · · , zn−1,−zn)

To describe the results, we prepare some notation, we set

Σ+ = Σ+
s ⊔ Σ+

ℓ

Σ+
s = {ei + ej , ei − ej | 1 ≤ i < j ≤ n}, Σ+

ℓ = {2ei | 1 ≤ i ≤ n}

where ei ∈ Zn is the i-th unit vector, we define a pairing

⟨ , ⟩ : Zn × Cn −→ C, ⟨α, z⟩ =
n∑

i=1

αizi

Theorem 3.2. The function G(z)·ω(x; z) is holomorphic andW -invariant, hence belong to C[q±z1 , · · · , q±zn ]W

where

G(z) =
∏
α

1 + q⟨α,z⟩

1− q⟨α,z⟩ − 1

where α runs over the set Σ+
s for m = 2n and Σ+ for m = 2n+ 1.
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Theorem 3.3. (Explicit formula) For each λ ∈ Λ+
n , one has

ω(xλ; z) =
cn
G(z)

· q⟨λ,z0⟩ ·Qλ(z; t)

where G(z) is given as in 3.2, z0 is the value in z-variable corresponding to s = 0, cn is some explicit
constants.

Qλ(z; t) =
∑
σ∈W

σ(q−⟨λ,z⟩c(z; t)), c(z; t) =
∏

α∈Σ+

1− tαq
⟨α,z⟩

1− q⟨α,z⟩

here

tα =

{
ts if α ∈ Σ+

s

tℓ if α ∈ Σ+
ℓ

where ts = −q−1, and tℓ =

{
q−1 if m = 2n

−q−2 if m = 2n+ 1

We see that Qλ(z; t) ∈ R by 3.2. It is known that Qλ(z; t) =Wλ(t)Pλ(z; t) with Hall-Littlewood polyno-
mial Pλ(z; t) and Poincare polynomial Wλ(t) and the set {Pλ(z; t) | λ ∈ Λ+

n } forms an orthogonal C-basis
for R for each tα ∈ R, |tα| < 1.

In particular, we have

ω(x0; z) =
(1− q−1)nωn(−q−1)ωm′(−q−1)

ωm(−q−1)
·G(z)−1, m′ = [

m+ 1

2
]

We modify spherical functions as follows

Ψ(x; z) =
ω(x; z)

ω(12n; z)
∈ R = C[q±z1 , · · · , q±zn ]W

and define the spherical Fourier transform on the Schwartz space by

F : S(K\X) −→ R

φ 7−→ F (φ)(z) =

∫
X

φ(x) Ψ(x; z) dx

Theorem 3.4. The spherical transform F gives an H(G,K)-module isomorphism

S(K\X) ∼= C[q±z1 , · · · , q±zn ]W

We introduce the inner product ⟨ , ⟩R on R by

⟨P,Q⟩R =

∫
a∗

P (z)Q(z) dµ(z), P,Q ∈ R

here a∗ = {
√
−1(R/ 2π

log qZ)}
n and

(3.1) dµ =
1

n!2n
· ωn(−q−1)ωn+1(−q−1)

(1 + q−1)n+1
· 1

|c(z)|2
dz

Theorem 3.5. Let dµ be the measure defined by (3.1), then by the normalization of G-invariant measure
dx such that

v(K · xλ) = q−2⟨λ,z0⟩ ω̃0(−q−1)

ω̃λ(−q−1)

for any φ,ψ ∈ S(K\X), we have∫
X

φ(x)ψ(x) dx =

∫
a∗

F (φ)(z)F (ψ)(z) dµ(z)

Proposition 3.6. Assume n = 1, for xℓ = diag(πℓ, 1, π−ℓ), ℓ ≥ 0, it holds that

ω(xℓ; s) =
1 + q−3−2s

(1 + q−3)(1− q−4−4s)
{qℓs(1− q−4−2s)− q−2(ℓ+1)−ℓs(1− q−2s)}
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where s = −z − 1− π
√
−1

2log q and for any x ∈ X1

ω(x; z) =
1− q−1+2z

q2z − q−1
ω(x;−z)

Let’s discuss the proof of this proposition.

Lemma 3.7. We have K1 = K1,1 ⊔K1,2.

Theorem 3.8. There are precisely two G-orbits in X1

G · x0 =
⊔

λ∈Λ+
n , |λ| even

K · xλ, G · x1 =
⊔

λ∈Λ+
n , |λ| odd

K · xλ

It is easy to see that vol(K1,1) : vol(K1,2) = 1 : q−3. For k ∈ K1,2, we have

|d1(k · xℓ)| = |π|−ℓ

and ∫
K1,2

|d1(k · xℓ)|s dk =
q−3+ℓs

1 + q−3

Assume ℓ is even and positive, then

(1−q−1−2s)(1+q−3)q−ℓs

∫
K1,1

|d1(k·xℓ)|s dk =
1− q−1+2s

1− q−4−4s
(1−q−3+q−3−2s−q−4−2s−q−2(ℓ+1)−2ℓs(1−q−2s)(1+q−3−2s))

Hence we obtain for even ℓ∫
K

|d1(k · xℓ)|s dk

=
(1 + q−3−2s)qℓs

(1 + q−3)(1− q−4−4s)
{(1− q−4−2s)− q−2ℓ−2ℓs(q−2 − q−2−2s)}

changing the variable from s to z we get∫
K

|d1(k · xℓ)|s dk

=

√
−1

ℓ
q−ℓ(1− q−1+2z)

(1 + q−3)(1 + q2z)
{q−ℓz 1 + q−2+2z

1− q2z
+ qℓz

1 + q−2−2z

1− q−2z
}

Assume ℓ is odd, we can calculate similarly∫
K

|d1(k · xℓ)|s dk

=

√
−1

ℓ
q−ℓ(1− q−1+2z)

(1 + q−3)(1− q4z)
{q−ℓz(1 + q2z−2)− qℓz(q−2 + q2z)}
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