SPHERICAL FUNCTIONS ON UNITARY MATRICES

RUI CHEN

1. Introduction

This is a study note for the paper [HK14].

2. The space X

Let k' be an unramified extension of a p-adic field k of odd residue characteristic and consider Hermitian and unitary matrices with respect to k'/k, and denote by a^* the conjugate transpose of $a \in M_{mn}(k')$. Let π be a prime element of k and q the cardinality of the residue field $\mathcal{O}_k/(\pi)$. We fix a unit $\epsilon \in \mathcal{O}_k^{\times}$ for which $k' = k(\sqrt{\epsilon})$.

We consider the unitary group

$$G = G_n = \{ g \in GL_{2n+1}(k') \mid g^* j_{2n+1} g = j_{2n+1} \}, \quad j_{2n+1} = \begin{pmatrix} 0 & \cdots & 1 \\ & \cdots & \\ 1 & \cdots & 0 \end{pmatrix}$$

and the space X of unitary matrices in G

$$X = X_n = \{x \in G \mid x^* = x, \ \Phi_{x_{i_{2n+1}}}(t) = (t^2 - 1)^n (t - 1)\}$$

where $\Phi_y(t)$ is the characteristic polynomial of the matrix y. We note that X is a single $G(\overline{k})$ -orbit containing 1_{2n+1} over the algebraic closure \overline{k} of k. The group G acts on X by

$$g \cdot x = gxg^* = gxj_{2n+1}g^{-1}j_{2n+1}, \ g \in G, \ x \in X$$

we fix a maximal compact subgroup K of G by

$$K = K_n = G \cap M_{2n+1}(\mathcal{O}_{k'})$$

Proposition 2.1. There are precisely two G-orbits in X_n :

$$G \cdot x_0 = \bigsqcup_{\lambda \in \Lambda_n^+, \ |\lambda| \ is \ even} K \cdot x_\lambda, \ G \cdot x_1 = \bigsqcup_{\lambda \in \Lambda_n^+, \ |\lambda| \ is \ odd} K \cdot x_\lambda$$

where
$$|\lambda| = \sum_{i=1}^{n} \lambda_i$$
, $x_0 = 1_{2n+1}$ and $x_1 = diag(\pi, 1, \dots, 1, \pi^{-1})$.

Proof. First we know that there are at most two G-orbits in X_n . We extend the k-automrophism * of k' to an element of $\Gamma = \operatorname{Gal}(\overline{k}/k)$ and the action of G on X to $G(\overline{k})$ on $X(\overline{k})$. We recall $X(\overline{k})$ is a single $G(\overline{k})$ -orbit and set

$$H(\overline{k}) = \{ h \in G(\overline{k}) \mid h \cdot 1_{2n+1} = 1_{2n+1} \}$$

then we can obtain

$$H(\overline{k}) \cong U(1_n)(\overline{k}) \times U(1_{2n+1})(\overline{k})$$

By the exact sequence of Γ -sets

$$1 \longrightarrow H(\overline{k}) \longrightarrow G(\overline{k}) \longrightarrow X_n(\overline{k}) \longrightarrow 1$$
$$g \longmapsto g \cdot 1_{2n+1}$$

we have an exact sequence of pointed sets

$$1 \longrightarrow G \cdot 1_{2n+1} \longrightarrow X_n \longrightarrow H^1(\Gamma, H(\overline{k})) \longrightarrow H^1(\Gamma, G(\overline{k}))$$

since $H^1(\Gamma, H(\overline{k})) \to H^1(\Gamma, G(\overline{k}))$ is a map from $C_2 \times C_2$ to C_2 , it cannot be trivial, hence $G \cdot 1_{2n+1} \neq X_n$, hence there are least two G-orbits in X_n and thus exactly two G-orbits.

Date: April 2025.

Theorem 3.1. A set of complete representations of $K \setminus X$ can be taken as

$$\{x_{\lambda} \mid \lambda \in \Lambda_n^+\}$$

where

$$x_{\lambda} = \begin{cases} Diag(\pi^{\lambda_1}, \dots, \pi^{\lambda_n}, \pi^{-\lambda_n}, \dots, \pi^{-\lambda_1}) & if \quad m = 2n \\ Diag(\pi^{\lambda_1}, \dots, \pi^{\lambda_n}, 1, \pi^{-\lambda_n}, \dots, \pi^{-\lambda_1}) & if \quad m = 2n + 1 \end{cases}$$

$$\Lambda_n^+ = \{ \lambda \in \mathbb{Z}^n \mid \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 0 \}$$

A spherical function on X is a K-invariant function on X which is a common eigenfunction with respect to the common convolutive action of the Hecke algebra $\mathcal{H}(G,K)$, and a typical one is constructed by Poisson transform from the relative invariants of a parabolic subgroup. We take the Borel subgroup B consisting of upper triangular matrices in G.

We introduce a spherical function $\omega(x;s)$ on X by Poisson transform from relative B-invariants, for a matrix $g \in G$, denote $d_i(g)$ the determinant of lower right i by i block of g. Then $d_i(x)$, $1 \le i \le n$ are relative B-invariants on X associated with rational characters ψ_i of B where

$$d_i(p \cdot x) = \psi_i(p)d_i(x), \ \psi_i(p) = N_{k'/k}(d_i(p)) \ (x \in X, \ p \in B)$$

For $x \in X$ and $s \in \mathbb{C}^n$, we consider the integral

$$\omega(x;s) = \int_{K} |d(k \cdot x)|^{s} dk, \quad |d(y)|^{s} = \prod_{i=1}^{n} |d_{i}(y)|^{s_{i}}$$

Then the right hand side is absolutely convergent for $\operatorname{Res}(s_i) \geq 0$, $1 \leq i \leq n$ and continued to be a rational function of q^{s_1}, \dots, q^{s_n} . Since $d_i(x)$ are relative *B*-invariants on *X* such that

$$d_i(p \cdot x) = \psi_i(p)d_i(x), \quad \psi_i(p) = N_{k'/k}(d_i(p)) \quad (p \in B, \ x \in X, \ 1 \le i \le n)$$

we see $\omega(x;s)$ is a spherical function X which satisfies

$$f * \omega(x;s) = \lambda_s(f)\omega(x;s), \ f \in \mathcal{H}(G,K)$$
$$\lambda_s(f) = \int_B f(p)\Pi_{i=1}^n |\psi_i(p)|^{-s_i} \delta(p) \ dp$$

The Weyl group W of G relative to B acts on the rational characters of B, hence on z and s also. The group W is generated by S_n which acts on z by permutation of indices and by τ such that

$$\tau(z_1,\cdots,z_n)=(z_1,\cdots,z_{n-1},-z_n)$$

To describe the results, we prepare some notation, we set

$$\Sigma^{+} = \Sigma_{s}^{+} \sqcup \Sigma_{\ell}^{+}$$

$$\Sigma_{s}^{+} = \{e_{i} + e_{j}, e_{i} - e_{j} \mid 1 \le i < j \le n\}, \Sigma_{\ell}^{+} = \{2e_{i} \mid 1 \le i \le n\}$$

where $e_i \in \mathbb{Z}^n$ is the *i*-th unit vector, we define a pairing

$$\langle \ , \ \rangle : \mathbb{Z}^n \times \mathbb{C}^n \longrightarrow \mathbb{C}, \ \langle \alpha, z \rangle = \sum_{i=1}^n \alpha_i z_i$$

Theorem 3.2. The function $G(z)\cdot\omega(x;z)$ is holomorphic and W-invariant, hence belong to $\mathbb{C}[q^{\pm z_1},\cdots,q^{\pm z_n}]^W$ where

$$G(z) = \prod_{\alpha} \ \frac{1 + q^{\langle \alpha, z \rangle}}{1 - q^{\langle \alpha, z \rangle} - 1}$$

where α runs over the set Σ_s^+ for m=2n and Σ^+ for m=2n+1.

Theorem 3.3. (Explicit formula) For each $\lambda \in \Lambda_n^+$, one has

$$\omega(x_{\lambda};z) = \frac{c_n}{G(z)} \cdot q^{\langle \lambda, z_0 \rangle} \cdot Q_{\lambda}(z;t)$$

where G(z) is given as in 3.2, z_0 is the value in z-variable corresponding to s=0, c_n is some explicit constants.

$$Q_{\lambda}(z;t) = \sum_{\sigma \in W} \sigma(q^{-\langle \lambda, z \rangle} c(z;t)), \quad c(z;t) = \prod_{\alpha \in \Sigma^{+}} \frac{1 - t_{\alpha} q^{\langle \alpha, z \rangle}}{1 - q^{\langle \alpha, z \rangle}}$$

here

$$t_{\alpha} = \begin{cases} t_s & \text{if } \alpha \in \Sigma_s^+ \\ t_{\ell} & \text{if } \alpha \in \Sigma_{\ell}^+ \end{cases}$$

where
$$t_s = -q^{-1}$$
, and $t_{\ell} = \begin{cases} q^{-1} & \text{if } m = 2n \\ -q^{-2} & \text{if } m = 2n + 1 \end{cases}$

We see that $Q_{\lambda}(z;t) \in \mathcal{R}$ by 3.2. It is known that $Q_{\lambda}(z;t) = W_{\lambda}(t)P_{\lambda}(z;t)$ with Hall-Littlewood polynomial $P_{\lambda}(z;t)$ and Poincare polynomial $W_{\lambda}(t)$ and the set $\{P_{\lambda}(z;t) \mid \lambda \in \Lambda_n^+\}$ forms an orthogonal \mathbb{C} -basis for \mathcal{R} for each $t_{\alpha} \in \mathbb{R}$, $|t_{\alpha}| < 1$.

In particular, we have

$$\omega(x_0; z) = \frac{(1 - q^{-1})^n \omega_n(-q^{-1}) \omega_{m'}(-q^{-1})}{\omega_m(-q^{-1})} \cdot G(z)^{-1}, \quad m' = \left[\frac{m+1}{2}\right]$$

We modify spherical functions as follows

$$\Psi(x;z) = \frac{\omega(x;z)}{\omega(1_{2n};z)} \in \mathcal{R} = \mathbb{C}[q^{\pm z_1}, \cdots, q^{\pm z_n}]^W$$

and define the spherical Fourier transform on the Schwartz space by

$$F: \mathcal{S}(K \backslash X) \longrightarrow \mathcal{R}$$

$$\varphi \longmapsto F(\varphi)(z) = \int_{\mathbb{R}^n} \varphi(x) \ \Psi(x; z) \ dx$$

Theorem 3.4. The spherical transform F gives an $\mathcal{H}(G,K)$ -module isomorphism

$$\mathcal{S}(K\backslash X)\cong\mathbb{C}[q^{\pm z_1},\cdots,q^{\pm z_n}]^W$$

We introduce the inner product $\langle \ , \ \rangle_{\mathcal{R}}$ on \mathcal{R} by

$$\langle P, Q \rangle_{\mathcal{R}} = \int_{\sigma^*} P(z) \overline{Q(z)} \ d\mu(z), \ P, Q \in \mathcal{R}$$

here $\mathfrak{a}^* = \{\sqrt{-1}(\mathbb{R}/\frac{2\pi}{\log q}\mathbb{Z})\}^n$ and

(3.1)
$$d\mu = \frac{1}{n!2^n} \cdot \frac{\omega_n(-q^{-1})\omega_{n+1}(-q^{-1})}{(1+q^{-1})^{n+1}} \cdot \frac{1}{|c(z)|^2} dz$$

Theorem 3.5. Let $d\mu$ be the measure defined by (3.1), then by the normalization of G-invariant measure dx such that

$$v(K \cdot x_{\lambda}) = q^{-2\langle \lambda, z_0 \rangle} \frac{\widetilde{\omega_0}(-q^{-1})}{\widetilde{\omega_{\lambda}}(-q^{-1})}$$

for any $\varphi, \psi \in \mathcal{S}(K \backslash X)$, we have

$$\int_{Y} \varphi(x) \overline{\psi(x)} \ dx = \int_{\sigma^{*}} F(\varphi)(z) \overline{F(\psi)(z)} \ d\mu(z)$$

Proposition 3.6. Assume n = 1, for $x_{\ell} = diag(\pi^{\ell}, 1, \pi^{-\ell}), \ \ell \geq 0$, it holds that

$$\omega(x_{\ell};s) = \frac{1 + q^{-3-2s}}{(1 + q^{-3})(1 - q^{-4-4s})} \{ q^{\ell s} (1 - q^{-4-2s}) - q^{-2(\ell+1)-\ell s} (1 - q^{-2s}) \}$$

where $s = -z - 1 - \frac{\pi\sqrt{-1}}{2\log q}$ and for any $x \in X_1$

$$\omega(x;z) = \frac{1 - q^{-1+2z}}{q^{2z} - q^{-1}} \omega(x; -z)$$

Let's discuss the proof of this proposition.

Lemma 3.7. We have $K_1 = K_{1,1} \sqcup K_{1,2}$.

Theorem 3.8. There are precisely two G-orbits in X_1

$$G \cdot x_0 = \bigsqcup_{\lambda \in \Lambda_n^+, \ |\lambda| \ even} K \cdot x_\lambda, \ G \cdot x_1 = \bigsqcup_{\lambda \in \Lambda_n^+, \ |\lambda| \ odd} K \cdot x_\lambda$$

It is easy to see that $vol(K_{1,1}): vol(K_{1,2}) = 1: q^{-3}$. For $k \in K_{1,2}$, we have

$$|d_1(k \cdot x_\ell)| = |\pi|^{-\ell}$$

and

$$\int_{K_{1,2}} |d_1(k \cdot x_\ell)|^s dk = \frac{q^{-3+\ell s}}{1+q^{-3}}$$

Assume ℓ is even and positive, then

$$(1-q^{-1-2s})(1+q^{-3})q^{-\ell s}\int_{K_{1,1}}|d_1(k\cdot x_\ell)|^s\;dk=\frac{1-q^{-1+2s}}{1-q^{-4-4s}}(1-q^{-3}+q^{-3-2s}-q^{-4-2s}-q^{-2(\ell+1)-2\ell s}(1-q^{-2s})(1+q^{-3-2s}))$$

Hence we obtain for even ℓ

$$\int_{K} |d_{1}(k \cdot x_{\ell})|^{s} dk$$

$$= \frac{(1 + q^{-3-2s})q^{\ell s}}{(1 + q^{-3})(1 - q^{-4-2s})} \{ (1 - q^{-4-2s}) - q^{-2\ell - 2\ell s}(q^{-2} - q^{-2-2s}) \}$$

changing the variable from s to z we get

$$\int_{K} |d_{1}(k \cdot x_{\ell})|^{s} dk$$

$$= \frac{\sqrt{-1}^{\ell} q^{-\ell} (1 - q^{-1+2z})}{(1 + q^{-3})(1 + q^{2z})} \left\{ q^{-\ell z} \frac{1 + q^{-2+2z}}{1 - q^{2z}} + q^{\ell z} \frac{1 + q^{-2-2z}}{1 - q^{-2z}} \right\}$$

Assume ℓ is odd, we can calculate similarly

$$\int_{K} |d_{1}(k \cdot x_{\ell})|^{s} dk$$

$$= \frac{\sqrt{-1}^{\ell} q^{-\ell} (1 - q^{-1+2z})}{(1 + q^{-3})(1 - q^{4z})} \{ q^{-\ell z} (1 + q^{2z-2}) - q^{\ell z} (q^{-2} + q^{2z}) \}$$

References

[HK14] Yumiko Hironaka and Yasushi Komori. Spherical functions on the space of p-adic unitary hermitian matrices II, the case of odd size. arXiv preprint arXiv:1403.3748, 2014.