L-FUNCTIONS FOR U(3)

RUI CHEN

1. INTRODUCTION

Following [GPS06] and [GR91] we describe two different zeta integral representations of the degree 6
L-function attached to a cuspidal representation 7 of U(3), the first is a Rankin-Selberg integral valid only
for generic 7 and the second is a more complicated ”Shimura-type” integral valid for arbitrary .

2. L-FUNCTIONS FOR U (3)

2.1. Eisenstein series on U(1,1). Recall that V is the three dimensional vector space over E with skew-
Hermitian form given by the matrix

3
-1

denote by ¢_1, ¢y, ¢1 the corresponding basis for V', let W be the subspace spanned by ¢_; and ¢;, then W is
a skew-Hermitian space with unitary group H = U(W) may be identified with the subgroup of G stabilizing
ly. Let By denote the Borel subgroup
a 0 f
{{0 1 0 |}CcH
0 0 at

with maximal torus = E*. Fixing any character £ of the idele class group of E and any s € C we define a
character wg of By via

a 0 g
w([0 1 0 ])=¢@laly acay
0 0
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we denote F : H(A) — C a smooth function satisfying
F; (bh) = wZ T (b)F (h)
where b € By (A) and h € H(A), we define the Eisenstein series by

Z F;(Vh):Ef(h’F*’S)
YEBu\H(F)

this is known to be convergent only in some right half plane Re(s) > so. The only possible pole of E¢ in the
right half plane is at s = 1 and its residue is propotional to the character {(det h). In general E. defines an
autormophic forms on H(A), we shall assume that F*(g) is decomposable

F*(g) = [ Fi(90)
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2.2. The Rankin-Selberg integral. Fix an arbitrary automorphic cuspidal representation 7 of G(A) act-
ing on the space Vi, to each ¢ € V, and FEisenstein series data £ and F* as above, we may form the
zeta-integral
L(@aF*agas):/ Qﬁ(h) Eg(h,F*,S) dh
H(k)\H(A)

because E¢ is an automorphic form on H(F)\H(A) and the restriction of ¢ to H(F)\H(A) is still rapidly
decreasing, it follows that the integral converges and defines a meromorphic function in all of C. Moreover
L(p, F*,&, s) has a functional equation. The only possible pole of L(p, F*,&,s) is in Re(s) > 0isat s =1
and it is proportional to the period integral

(2.1) / o ()E(R) dh
H(F)\H(A)

Proposition 2.1. Let S denote the finite set of places of F outside of which v is finite and the data
©u, EF, )y and &, are unramified. Then for Re(s) sufficiently large, we have

L{p, F",&,8) = / WY (h)F*(h) dh
Un (A)\H (A)
= (H L(VVU? quv 5))L5(5a77 X g)
veS
here Wg’ denotes the - Whittaker function of ¢ but restricted to H C G and L(W,, E,s) is the local zeta
integral

/ W, () Fu(h) dh
Us\Hy

and Lg(s,m x £) is the Langlands L-function, as a product outside the places v outside S. Uy the unipotent
subgroup of H.

Remark 2.2. Because H(F)\H(A) may be regarded as an algebraic cycle in G(F)\G(A) we may interpret
(2.1) as a period integral and conclude the existence of a pole for L(s, 7 x ) is related to the non-vanishing
of this period.

2.3. Unramified computation. In this section, we will assume that everything is unramified. Thus we
suppose that F' is a local non-archimedean field of odd characteristic, and E is an unramified quadratic
extension of F. Let Op ( resp. Of) denote the ring of integers of F' (resp. F), w a generator of the prime
ideal p of O and ¥ a character of F' of conductor 1.

Let K be the standard maximal compact subgroup of GG, because E is unramified, we have

G=NAK

where A = diag(t,1,t7!) t € F* is the maximal F-split torus of G.
Suppose 7 is an unramified representation of G with respect to K, then 7 is of the form 7 = Indgu, where
v is an unramified character of E*. The function W is uniquely characterized by the following properties

o W(nak) =¢yn(a)W(a) foralln e N, a€ A, k€ K.

)
ew(| 1 ) =0if |§]p > 1.
571
e foralln >0
w" 0 0 n+l _ —(n+1)
W( 0 1 0 ) _ |w|2nl/(w) V(w)_l
0 0 wn v(iw) —v(w)

We now compute L*(W, Fg, s) with p an unramified character of E* and ® the characteristic function of
the Og-module in E{_; ® F{; generated by £_1 and /.
Let Ky = KN H, since Z =N N H, we have H = ZAKp with corresponding integration formula

/Z\H f) dh:/KH/FX r | waa an

a
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here f’ is a function of Z\H and Haar measure d*a on F* is normalized so that m(O}) = 1. Note that

Fo( 1 k) = u(a)lali Fo (1)

we have

LW Fas) =B [ W1 D@l o

we have Fg(1) = Lg(s, p).
It remains to calculate the integral with the unramified Whittaker function, we have

a

/ w( 1 Ju(a)lal* 2 d*a
FX

a

> ) =" 3 vl ()

n—=0 itj

B 1 1

1= plw(@)|w? 1 - p(w)r=(w)|w]?
= Lp(2s, uv) Lp(2s, pw ")

all together we have L(s,m, ) = Qo(q~*)~! with Qo a polynomial of degree 6 in ¢—*.

3. ON PERIODS OF CUSP FORMS AND ALGEBRAIC CYCLES FOR U (3)

The following is a summary of the results of the paper [GRS93].

3.1. The relation between P(m,c,x) and theta-lifting. We fix U(1,1) to act on the Hermitian space
W = FEw; & Ewy with corresponding Hermitian form

y_( 0 &t
(%)

then U(W) = U(1,1) = Hy, its derived subgroup is SLy(F), U(V) x U(W) embeds into the symplectic
group and embeds into the metaplectic group of V @ W for each choice of splitting data (¢, v, x1, x2)

Theorem 3.1. Let w be a cuspidal representation of G, then the following are equivalent:

e P(m,c,x) #0 for some ¢ and x.
e 1 has a non-zero theta-lift to Hy.
e 7 is a theta-lift to some cuspidal representation o of Hy.

Furthermore, suppose o is the theta-lift of m to Hy relative the specific lifting data (1,7, x1,Xx2) then
P(m,c,v'x2) # {0} if and only if o has a non-zero Whittaker model W(o,.) relative to the additive
character ..

The proof is based on the computation of the Fourier coefficient of the theta-lift p € w to H
fu(e) = / vixz(det 9)@(veg @ w2) P97, ¢, v x2) dg
Ge(M\G(A)

where ¢9(z) = ¢(xg). Now since ® is an arbitray Schwartz function, we can conclude that fy_(e) = 0 if and
only if P(p?, ¢,y x1) =0 for all g € G(A). In particular we conclude P(r,c,x) # 0 for some ¢ and y if and
only if m has a non-zero theta-lift to H;.
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3.2. Periods of stable 7. We say that a cuspidal 7 is stable if and only if any theta-series lift of 7 to any
unitary group in two variables is zero. In particular any theta lift of 7 to H; = U(1,1) is zero and hence for
stable 7
P(rm, e, x)
for all ¢ and . This fact is philosophically consistent with Tate’s conjecture relating the poles for L(s, 7 x &)
to the existence of non-trivial periods of 7 since L(s, 7 x &) is always entire for stable cuspidal .
Therefore we may restrict our discussion to the periods to the case of endoscopic 7.

3.3. Periods of exceptional 7. Suppose 7 is cuspidal but in an A-packet II(p), if the theta lift of 7w to
U(1,1) were non-trivial, it would automatically be cuspidal and 7 itself would then be a theta-lift of this
cuspidal ¢ on U(1,1), but then will imply that = € II(p) with p cuspidal, this is a contradiction to our
assumption that 7 is exceptional. Thus we conclude that the periods of such exceptional = must be all
vanish.

3.4. The case of generic cuspidal endoscopic 7. Suppose 7 is a generic element of a cuspidal endoscopic
packet II(p), in this case the fact L(s,m x &) has a pole at s = 1 for some £ = &, is equivalent to the fact
that an appropriate theta-series lift of m to U(1,1) is non-zero, and the residue L(s,7 X &) can be expressed
directly in terms of the period P(mg,1,&p). Using we can conclude that for generic cuspidal 7, the
following are equivalent

(1) L(s,m x &) has a pole at s = 1 for some fixed & = .

(2:) P(m,1,&) #0.
(3') an appropriate theta-series lift of = to U(1,1) is non-zero.
Now what is the situation for arbitrary 7? By the theory of [GR91], the conditions (1) and (3') are still
equivalent, provided the phrase "to U(1,1)” is replaced by the phrase "to some U(®')”.

3.5. Compact periods of hypercuspidal 7. Let’s call a cuspidal representation o fo U(Y") is theta-stable
if any theta-lift of o to U(1) = U(Ew,) is zero.

Proposition 3.2. There exist hypercuspidal endoscopic cuspidal m on U(3) with the property that
P(m,c,x) =0

for all ¢ and x. Indeed if o is a theta-stable cuspidal representation of an anisotropic U(Y') and the lifting is
choosen so that the lift of o to U(3) is zero, then any irreducible component of m = @f&xz (0) is a cuspidal
representation on U(3).

Proposition 3.3. There exists a hypercuspidal endoscopic m such that

P(m,c,x) #0
for some ¢ and x. Namely: take a cuspidal o on UMW) 2 U(1,1), a character ¢ of AJF such that W(o, ) =
{0}, and the lifting data (¢¥,~y, x1, x2) such that @fﬁf“ (o) # {0} on U(3), then each irreducible component
of Oy (o) is an irreducible hypercuspidal endoscopic m of the above type.

First we want to show m = Oy (o) is hypercuspidal, hence ©(o) generates an irreducible hypercuspidal
endoscopic representation 7 of U(3), moreover 7 itself is a theta-lift from o cuspidal on U(1,1), it must have
a non-zero lift back to U(1, 1), hence by some P(m,c,x) is non-zero.
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