L-FUNCTIONS FOR U(3)

RUI CHEN

1. Introduction

Following [GPS06] and [GR91] we describe two different zeta integral representations of the degree 6 L-function attached to a cuspidal representation π of U(3), the first is a Rankin-Selberg integral valid only for generic π and the second is a more complicated "Shimura-type" integral valid for arbitrary π .

2. L-functions for U(3)

2.1. Eisenstein series on U(1,1). Recall that V is the three dimensional vector space over E with skew-Hermitian form given by the matrix

$$\begin{pmatrix} & & 1 \\ & \xi & \\ -1 & & \end{pmatrix}$$

denote by ℓ_{-1} , ℓ_0 , ℓ_1 the corresponding basis for V, let W be the subspace spanned by ℓ_{-1} and ℓ_1 , then W is a skew-Hermitian space with unitary group H = U(W) may be identified with the subgroup of G stabilizing ℓ_0 . Let B_H denote the Borel subgroup

$$\left\{ \begin{pmatrix} \alpha & 0 & \beta \\ 0 & 1 & 0 \\ 0 & 0 & \overline{\alpha}^{-1} \end{pmatrix} \right\} \subset H$$

with maximal torus $\cong E^{\times}$. Fixing any character ξ of the idele class group of E and any $s \in \mathbb{C}$ we define a character ω_{ξ}^{s} of B_{H} via

$$\omega_{\xi}^{s}(\begin{pmatrix} \alpha & 0 & \beta \\ 0 & 1 & 0 \\ 0 & 0 & \overline{\alpha}^{-1} \end{pmatrix}) = \xi(\alpha)|\alpha|_{E}^{s} \ \alpha \in \mathbb{A}_{E}^{\times}$$

we denote $F_s^*: H(\mathbb{A}) \to \mathbb{C}$ a smooth function satisfying

$$F_s^*(bh) = \omega_\xi^{s+1}(b) F_s^*(h)$$

where $b \in B_H(\mathbb{A})$ and $h \in H(\mathbb{A})$, we define the Eisenstein series by

$$\sum_{\gamma \in B_H \backslash H(F)} F_s^*(\gamma h) = E_{\xi}(h, F^*, s)$$

this is known to be convergent only in some right half plane $Re(s) > s_0$. The only possible pole of E_{ξ} in the right half plane is at s = 1 and its residue is proportional to the character $\xi(\det h)$. In general E_{ξ} defines an autormorphic forms on $H(\mathbb{A})$, we shall assume that $F^*(g)$ is decomposable

$$F^*(g) = \prod F_v^*(g_v)$$

Date: March 2025.

2.2. The Rankin-Selberg integral. Fix an arbitrary automorphic cuspidal representation π of $G(\mathbb{A})$ acting on the space V_{π} , to each $\varphi \in V_{\pi}$ and Eisenstein series data ξ and F^* as above, we may form the zeta-integral

$$L(\varphi, F^*, \xi, s) = \int_{H(k)\backslash H(\mathbb{A})} \varphi(h) \ E_{\xi}(h, F^*, s) \ dh$$

because E_{ξ} is an automorphic form on $H(F)\backslash H(\mathbb{A})$ and the restriction of φ to $H(F)\backslash H(\mathbb{A})$ is still rapidly decreasing, it follows that the integral converges and defines a meromorphic function in all of \mathbb{C} . Moreover $L(\varphi, F^*, \xi, s)$ has a functional equation. The only possible pole of $L(\varphi, F^*, \xi, s)$ is in Re(s) > 0 is at s = 1 and it is proportional to the period integral

(2.1)
$$\int_{H(F)\backslash H(\mathbb{A})} \varphi(h)\xi(h) dh$$

Proposition 2.1. Let S denote the finite set of places of F outside of which v is finite and the data φ_v , F_v^* , ψ_v and ξ_v are unramified. Then for Re(s) sufficiently large, we have

$$L(\varphi, F^*, \xi, s) = \int_{U_H(\mathbb{A})\backslash H(\mathbb{A})} W_{\varphi}^{\psi}(h) F^*(h) \ dh$$
$$= (\prod_{v \in S} L(W_v, F_v^*, s)) L_S(s, \pi \times \xi)$$

here W_{φ}^{ψ} denotes the ψ -Whittaker function of φ but restricted to $H \subset G$ and $L(W_v, F_v^*, s)$ is the local zeta integral

$$\int_{U_v \setminus H_v} W_{\pi_v}(h) F_v(h) \ dh$$

and $L_S(s, \pi \times \xi)$ is the Langlands L-function, as a product outside the places v outside S. U_H the unipotent subgroup of H.

Remark 2.2. Because $H(F)\backslash H(\mathbb{A})$ may be regarded as an algebraic cycle in $G(F)\backslash G(\mathbb{A})$ we may interpret (2.1) as a period integral and conclude the existence of a pole for $L(s, \pi \times \xi)$ is related to the non-vanishing of this period.

2.3. Unramified computation. In this section, we will assume that everything is unramified. Thus we suppose that F is a local non-archimedean field of odd characteristic, and E is an unramified quadratic extension of F. Let \mathcal{O}_F (resp. \mathcal{O}_E) denote the ring of integers of F (resp. E), ϖ a generator of the prime ideal \mathfrak{p} of \mathcal{O}_F and ψ a character of F of conductor 1.

Let K be the standard maximal compact subgroup of G, because E is unramified, we have

$$G = NAK$$

where $A = \operatorname{diag}(t, 1, t^{-1})$ $t \in F^{\times}$ is the maximal F-split torus of G.

Suppose π is an unramified representation of G with respect to K, then π is of the form $\pi = \operatorname{Ind}_B^G \nu$, where ν is an unramified character of E^{\times} . The function W is uniquely characterized by the following properties

- $W(nak) = \psi_N(a)W(a)$ for all $n \in N$, $a \in A$, $k \in K$.
- $W(\begin{pmatrix} \delta & 1 \\ & 1 \\ & \delta^{-1} \end{pmatrix}) = 0 \text{ if } |\delta|_F > 1.$
- for all n > 0

$$W(\begin{pmatrix} \varpi^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \varpi^{-n} \end{pmatrix}) = |\varpi|^{2n} \frac{\nu(\varpi)^{n+1} - \nu(\varpi)^{-(n+1)}}{\nu(\varpi) - \nu(\varpi)^{-1}}$$

We now compute $L^{\mu}(W, F_{\Phi}, s)$ with μ an unramified character of E^{\times} and Φ the characteristic function of the \mathcal{O}_E -module in $E\ell_{-1} \oplus E\ell_1$ generated by ℓ_{-1} and ℓ_1 .

Let $K_H = K \cap H$, since $Z = N \cap H$, we have $H = ZAK_H$ with corresponding integration formula

$$\int_{Z\backslash H} f'(h)\ dh = \int_{K_H} \int_{F^\times} f'(\begin{pmatrix} a & & \\ & 1 & \\ & & a^{-1} \end{pmatrix} k)|a|^{-2} d^\times a\ dk$$

here f' is a function of $Z \setminus H$ and Haar measure $d^{\times}a$ on F^{\times} is normalized so that $m(\mathcal{O}_F^{\times}) = 1$. Note that

$$F_{\Phi}\begin{pmatrix} a & & \\ & 1 & \\ & & a^{-1} \end{pmatrix} k) = \mu(a)|a|_E^s F_{\Phi}(1)$$

we have

$$L^{\mu}(W, F_{\Phi}, s) = F_{\Phi}(1) \int_{F^{\times}} W(\begin{pmatrix} a & & \\ & 1 & \\ & & a^{-1} \end{pmatrix}) \mu(a) |a|_{F}^{2s-2} d^{\times} a$$

we have $F_{\Phi}(1) = L_E(s, \mu)$.

It remains to calculate the integral with the unramified Whittaker function, we have

$$\int_{F^{\times}} W(\begin{pmatrix} a & 1 & \\ & a^{-1} \end{pmatrix}) \mu(a) |a|^{2s-2} d^{\times} a$$

$$= \sum_{n=0}^{\infty} \mu(\varpi^n) |\varpi^n|^{2s} \sum_{i+j} \nu(\varpi)^i \nu(\varpi^{-1})^j$$

$$= \frac{1}{1 - \mu(\varpi)\nu(\varpi) |\varpi|^{2s}} \frac{1}{1 - \mu(\varpi)\nu^{-1}(\varpi) |\varpi|^{2s}}$$

$$= L_F(2s, \mu\nu) L_F(2s, \mu\nu^{-1})$$

all together we have $L(s, \pi, \mu) = Q_0(q^{-s})^{-1}$ with Q_0 a polynomial of degree 6 in q^{-s} .

3. On periods of cusp forms and algebraic cycles for U(3)

The following is a summary of the results of the paper [GRS93].

3.1. The relation between $P(\pi, c, \chi)$ and theta-lifting. We fix U(1, 1) to act on the Hermitian space $W = E\omega_1 \oplus E\omega_2$ with corresponding Hermitian form

$$\Phi' = \begin{pmatrix} 0 & \xi^{-1} \\ -\xi^{-1} & 0 \end{pmatrix}$$

then $U(W) \cong U(1,1) \cong H_1$, its derived subgroup is $SL_2(F)$, $U(V) \times U(W)$ embeds into the symplectic group and embeds into the metaplectic group of $V \otimes W$ for each choice of splitting data $(\psi, \gamma, \chi_1, \chi_2)$

Theorem 3.1. Let π be a cuspidal representation of G, then the following are equivalent:

- $P(\pi, c, \chi) \neq 0$ for some c and χ .
- π has a non-zero theta-lift to H_1 .
- π is a theta-lift to some cuspidal representation σ of H_1 .

Furthermore, suppose σ is the theta-lift of π to H_1 relative the specific lifting data $(\psi, \gamma, \chi_1, \chi_2)$ then $P(\pi, c, \gamma^1 \chi_2) \neq \{0\}$ if and only if σ has a non-zero Whittaker model $W(\sigma, \psi_c)$ relative to the additive character ψ_c .

The proof is based on the computation of the Fourier coefficient of the theta-lift $\varphi \in \pi$ to H_1

$$f_{\psi_c}(e) = \int_{G_c(\mathbb{A})\backslash G(\mathbb{A})} \gamma^1 \chi_2(\det g) \Phi(v_c g \otimes \omega_2) P(\varphi^g, c, \gamma^1 \chi_2) \ dg$$

where $\varphi^g(x) = \varphi(xg)$. Now since Φ is an arbitray Schwartz function, we can conclude that $f_{\psi_c}(e) = 0$ if and only if $P(\varphi^g, c, \gamma^1 \chi_1) = 0$ for all $g \in G(\mathbb{A})$. In particular we conclude $P(\pi, c, \chi) \neq 0$ for some c and χ if and only if π has a non-zero theta-lift to H_1 .

3.2. **Periods of stable** π . We say that a cuspidal π is *stable* if and only if any theta-series lift of π to any unitary group in two variables is zero. In particular any theta lift of π to $H_1 \cong U(1,1)$ is zero and hence for stable π

$$P(\pi, c, \chi)$$

for all c and χ . This fact is philosophically consistent with Tate's conjecture relating the poles for $L(s, \pi \times \xi)$ to the existence of non-trivial periods of π since $L(s, \pi \times \xi)$ is always entire for stable cuspidal π .

Therefore we may restrict our discussion to the periods to the case of endoscopic π .

- 3.3. **Periods of exceptional** π . Suppose π is cuspidal but in an A-packet $\Pi(\rho)$, if the theta lift of π to U(1,1) were non-trivial, it would automatically be cuspidal and π itself would then be a theta-lift of this cuspidal σ on U(1,1), but then 3.1 will imply that $\pi \in \Pi(\rho)$ with ρ cuspidal, this is a contradiction to our assumption that π is exceptional. Thus we conclude that the periods of such exceptional π must be all vanish.
- 3.4. The case of generic cuspidal endoscopic π . Suppose π is a generic element of a cuspidal endoscopic packet $\Pi(\rho)$, in this case the fact $L(s, \pi \times \xi)$ has a pole at s = 1 for some $\xi = \xi_0$ is equivalent to the fact that an appropriate theta-series lift of π to U(1,1) is non-zero, and the residue $L(s, \pi \times \xi_0)$ can be expressed directly in terms of the period $P(\pi_0, 1, \xi_0)$. Using 3.1, we can conclude that for generic cuspidal π , the following are equivalent
 - (1) $L(s, \pi \times \xi)$ has a pole at s = 1 for some fixed $\xi = \xi_0$.
 - $(2') P(\pi, 1, \xi_0) \neq 0.$
 - (3') an appropriate theta-series lift of π to U(1,1) is non-zero.

Now what is the situation for arbitrary π ? By the theory of [GR91], the conditions (1) and (3') are still equivalent, provided the phrase "to U(1,1)" is replaced by the phrase "to some $U(\Phi')$ ".

3.5. Compact periods of hypercuspidal π . Let's call a cuspidal representation σ fo U(Y) is theta-stable if any theta-lift of σ to $U(1) = U(Ev_c)$ is zero.

Proposition 3.2. There exist hypercuspidal endoscopic cuspidal π on U(3) with the property that

$$P(\pi, c, \chi) = 0$$

for all c and χ . Indeed if σ is a theta-stable cuspidal representation of an anisotropic U(Y) and the lifting is choosen so that the lift of σ to U(3) is zero, then any irreducible component of $\pi = \Theta_{\psi,\gamma}^{\chi_1,\chi_2}(\sigma)$ is a cuspidal representation on U(3).

Proposition 3.3. There exists a hypercuspidal endoscopic π such that

$$P(\pi,c,\chi) \neq 0$$

for some c and χ . Namely: take a cuspidal σ on $U(W) \cong U(1,1)$, a character ψ of \mathbb{A}/F such that $\mathcal{W}(\sigma,\psi) = \{0\}$, and the lifting data $(\psi,\gamma,\chi_1,\chi_2)$ such that $\Theta_{\psi,\gamma}^{\chi_1,\chi_2}(\sigma) \neq \{0\}$ on U(3), then each irreducible component of $\Theta_{\psi,\gamma}(\sigma)$ is an irreducible hypercuspidal endoscopic π of the above type.

First we want to show $\pi = \Theta_{\psi,\gamma}(\sigma)$ is hypercuspidal, hence $\Theta(\sigma)$ generates an irreducible hypercuspidal endoscopic representation π of U(3), moreover π itself is a theta-lift from σ cuspidal on U(1,1), it must have a non-zero lift back to U(1,1), hence by 3.1, some $P(\pi,c,\chi)$ is non-zero.

References

- [GPS06] Stephen Gelbart and Ilya Piatetski-Shapiro. Automorphic forms and L-functions for the unitary group. In *Lie Group Representations II: Proceedings of the Special Year held at the University of Maryland, College Park 1982–1983*, pages 141–184. Springer, 2006.
- [GR91] Stephen S Gelbart and Jonathan D Rogawski. L-functions and Fourier-Jacobi coefficients for the unitary group U(3). Inventiones mathematicae, 105:445–472, 1991.
- [GRS93] Stephen Gelbart, J Rogawski, and D Soudry. On periods of cusp forms and algebraic cycles for U(3). *Israel Journal of Mathematics*, 83:213–252, 1993.