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1. Introduction

Following [GPS06] and [GR91] we describe two different zeta integral representations of the degree 6
L-function attached to a cuspidal representation π of U(3), the first is a Rankin-Selberg integral valid only
for generic π and the second is a more complicated ”Shimura-type” integral valid for arbitrary π.

2. L-functions for U(3)

2.1. Eisenstein series on U(1, 1). Recall that V is the three dimensional vector space over E with skew-
Hermitian form given by the matrix  1

ξ
−1


denote by ℓ−1, ℓ0, ℓ1 the corresponding basis for V , letW be the subspace spanned by ℓ−1 and ℓ1, thenW is
a skew-Hermitian space with unitary group H = U(W ) may be identified with the subgroup of G stabilizing
ℓ0. Let BH denote the Borel subgroup

{

α 0 β
0 1 0
0 0 α−1

} ⊂ H

with maximal torus ∼= E×. Fixing any character ξ of the idele class group of E and any s ∈ C we define a
character ωsξ of BH via

ωsξ(

α 0 β
0 1 0
0 0 α−1

) = ξ(α)|α|sE α ∈ A×
E

we denote F ∗
s : H(A) → C a smooth function satisfying

F ∗
s (bh) = ωs+1

ξ (b)F ∗
s (h)

where b ∈ BH(A) and h ∈ H(A), we define the Eisenstein series by∑
γ∈BH\H(F )

F ∗
s (γh) = Eξ(h, F

∗, s)

this is known to be convergent only in some right half plane Re(s) > s0. The only possible pole of Eξ in the
right half plane is at s = 1 and its residue is propotional to the character ξ(det h). In general Eξ defines an
autormophic forms on H(A), we shall assume that F ∗(g) is decomposable

F ∗(g) =
∏

F ∗
v (gv)
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2.2. The Rankin-Selberg integral. Fix an arbitrary automorphic cuspidal representation π of G(A) act-
ing on the space Vπ, to each φ ∈ Vπ and Eisenstein series data ξ and F ∗ as above, we may form the
zeta-integral

L(φ, F ∗, ξ, s) =

∫
H(k)\H(A)

φ(h) Eξ(h, F
∗, s) dh

because Eξ is an automorphic form on H(F )\H(A) and the restriction of φ to H(F )\H(A) is still rapidly
decreasing, it follows that the integral converges and defines a meromorphic function in all of C. Moreover
L(φ, F ∗, ξ, s) has a functional equation. The only possible pole of L(φ, F ∗, ξ, s) is in Re(s) > 0 is at s = 1
and it is proportional to the period integral

(2.1)

∫
H(F )\H(A)

φ(h)ξ(h) dh

Proposition 2.1. Let S denote the finite set of places of F outside of which v is finite and the data
φv, F

∗
v , ψv and ξv are unramified. Then for Re(s) sufficiently large, we have

L(φ, F ∗, ξ, s) =

∫
UH(A)\H(A)

Wψ
φ (h)F

∗(h) dh

= (
∏
v∈S

L(Wv, F
∗
v , s))LS(s, π × ξ)

here Wψ
φ denotes the ψ-Whittaker function of φ but restricted to H ⊂ G and L(Wv, F

∗
v , s) is the local zeta

integral ∫
Uv\Hv

Wπv (h)Fv(h) dh

and LS(s, π× ξ) is the Langlands L-function, as a product outside the places v outside S. UH the unipotent
subgroup of H.

Remark 2.2. Because H(F )\H(A) may be regarded as an algebraic cycle in G(F )\G(A) we may interpret
(2.1) as a period integral and conclude the existence of a pole for L(s, π × ξ) is related to the non-vanishing
of this period.

2.3. Unramified computation. In this section, we will assume that everything is unramified. Thus we
suppose that F is a local non-archimedean field of odd characteristic, and E is an unramified quadratic
extension of F . Let OF ( resp. OE) denote the ring of integers of F (resp. E), ϖ a generator of the prime
ideal p of OF and ψ a character of F of conductor 1.

Let K be the standard maximal compact subgroup of G, because E is unramified, we have

G = NAK

where A = diag(t, 1, t−1) t ∈ F× is the maximal F -split torus of G.

Suppose π is an unramified representation of G with respect to K, then π is of the form π = IndGBν, where
ν is an unramified character of E×. The function W is uniquely characterized by the following properties

• W (nak) = ψN (a)W (a) for all n ∈ N, a ∈ A, k ∈ K.

• W (

δ 1
δ−1

) = 0 if |δ|F > 1.

• for all n ≥ 0

W (

ϖn 0 0
0 1 0
0 0 ϖ−n

) = |ϖ|2n ν(ϖ)n+1 − ν(ϖ)−(n+1)

ν(ϖ)− ν(ϖ)−1

We now compute Lµ(W,FΦ, s) with µ an unramified character of E× and Φ the characteristic function of
the OE-module in Eℓ−1 ⊕ Eℓ1 generated by ℓ−1 and ℓ1.

Let KH = K ∩H, since Z = N ∩H, we have H = ZAKH with corresponding integration formula∫
Z\H

f ′(h) dh =

∫
KH

∫
F×

f ′(

a 1
a−1

 k)|a|−2d×a dk
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here f ′ is a function of Z\H and Haar measure d×a on F× is normalized so that m(O×
F ) = 1. Note that

FΦ(

a 1
a−1

 k) = µ(a)|a|sEFΦ(1)

we have

Lµ(W,FΦ, s) = FΦ(1)

∫
F×

W (

a 1
a−1

)µ(a)|a|2s−2
F d× a

we have FΦ(1) = LE(s, µ).
It remains to calculate the integral with the unramified Whittaker function, we have∫

F×
W (

a 1
a−1

)µ(a)|a|2s−2 d×a

=
∞∑
n=0

µ(ϖn)|ϖn|2s
∑
i+j

ν(ϖ)iν(ϖ−1)j

=
1

1− µ(ϖ)ν(ϖ)|ϖ|2s
1

1− µ(ϖ)ν−1(ϖ)|ϖ|2s

= LF (2s, µν)LF (2s, µν
−1)

all together we have L(s, π, µ) = Q0(q
−s)−1 with Q0 a polynomial of degree 6 in q−s.

3. On periods of cusp forms and algebraic cycles for U(3)

The following is a summary of the results of the paper [GRS93].

3.1. The relation between P (π, c, χ) and theta-lifting. We fix U(1, 1) to act on the Hermitian space
W = Eω1 ⊕ Eω2 with corresponding Hermitian form

Φ′ =

(
0 ξ−1

−ξ−1 0

)
then U(W ) ∼= U(1, 1) ∼= H1, its derived subgroup is SL2(F ), U(V ) × U(W ) embeds into the symplectic
group and embeds into the metaplectic group of V ⊗W for each choice of splitting data (ψ, γ, χ1, χ2)

Theorem 3.1. Let π be a cuspidal representation of G, then the following are equivalent:

• P (π, c, χ) ̸= 0 for some c and χ.
• π has a non-zero theta-lift to H1.
• π is a theta-lift to some cuspidal representation σ of H1.

Furthermore, suppose σ is the theta-lift of π to H1 relative the specific lifting data (ψ, γ, χ1, χ2) then
P (π, c, γ1χ2) ̸= {0} if and only if σ has a non-zero Whittaker model W(σ, ψc) relative to the additive
character ψc.

The proof is based on the computation of the Fourier coefficient of the theta-lift φ ∈ π to H1

fψc(e) =

∫
Gc(A)\G(A)

γ1χ2(det g)Φ(vcg ⊗ ω2)P (φ
g, c, γ1χ2) dg

where φg(x) = φ(xg). Now since Φ is an arbitray Schwartz function, we can conclude that fψc
(e) = 0 if and

only if P (φg, c, γ1χ1) = 0 for all g ∈ G(A). In particular we conclude P (π, c, χ) ̸= 0 for some c and χ if and
only if π has a non-zero theta-lift to H1.
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3.2. Periods of stable π. We say that a cuspidal π is stable if and only if any theta-series lift of π to any
unitary group in two variables is zero. In particular any theta lift of π to H1

∼= U(1, 1) is zero and hence for
stable π

P (π, c, χ)

for all c and χ. This fact is philosophically consistent with Tate’s conjecture relating the poles for L(s, π×ξ)
to the existence of non-trivial periods of π since L(s, π × ξ) is always entire for stable cuspidal π.

Therefore we may restrict our discussion to the periods to the case of endoscopic π.

3.3. Periods of exceptional π. Suppose π is cuspidal but in an A-packet Π(ρ), if the theta lift of π to
U(1, 1) were non-trivial, it would automatically be cuspidal and π itself would then be a theta-lift of this
cuspidal σ on U(1, 1), but then 3.1 will imply that π ∈ Π(ρ) with ρ cuspidal, this is a contradiction to our
assumption that π is exceptional. Thus we conclude that the periods of such exceptional π must be all
vanish.

3.4. The case of generic cuspidal endoscopic π. Suppose π is a generic element of a cuspidal endoscopic
packet Π(ρ), in this case the fact L(s, π × ξ) has a pole at s = 1 for some ξ = ξ0 is equivalent to the fact
that an appropriate theta-series lift of π to U(1, 1) is non-zero, and the residue L(s, π× ξ0) can be expressed
directly in terms of the period P (π0, 1, ξ0). Using 3.1, we can conclude that for generic cuspidal π, the
following are equivalent

(1) L(s, π × ξ) has a pole at s = 1 for some fixed ξ = ξ0.

(2
′
) P (π, 1, ξ0) ̸= 0.

(3
′
) an appropriate theta-series lift of π to U(1, 1) is non-zero.

Now what is the situation for arbitrary π? By the theory of [GR91], the conditions (1) and (3
′
) are still

equivalent, provided the phrase ”to U(1, 1)” is replaced by the phrase ”to some U(Φ′)”.

3.5. Compact periods of hypercuspidal π. Let’s call a cuspidal representation σ fo U(Y ) is theta-stable
if any theta-lift of σ to U(1) = U(Evc) is zero.

Proposition 3.2. There exist hypercuspidal endoscopic cuspidal π on U(3) with the property that

P (π, c, χ) = 0

for all c and χ. Indeed if σ is a theta-stable cuspidal representation of an anisotropic U(Y ) and the lifting is
choosen so that the lift of σ to U(3) is zero, then any irreducible component of π = Θχ1,χ2

ψ,γ (σ) is a cuspidal

representation on U(3).

Proposition 3.3. There exists a hypercuspidal endoscopic π such that

P (π, c, χ) ̸= 0

for some c and χ. Namely: take a cuspidal σ on U(W ) ∼= U(1, 1), a character ψ of A/F such that W(σ, ψ) =
{0}, and the lifting data (ψ, γ, χ1, χ2) such that Θχ1,χ2

ψ,γ (σ) ̸= {0} on U(3), then each irreducible component

of Θψ,γ(σ) is an irreducible hypercuspidal endoscopic π of the above type.

First we want to show π = Θψ,γ(σ) is hypercuspidal, hence Θ(σ) generates an irreducible hypercuspidal
endoscopic representation π of U(3), moreover π itself is a theta-lift from σ cuspidal on U(1, 1), it must have
a non-zero lift back to U(1, 1), hence by 3.1, some P (π, c, χ) is non-zero.
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