THETA CORRESPONDENCE IN THE STABLE RANGE

RUI CHEN

1. Introduction

This is my study note on the unitarity and irreducibility of theta correspondence at the stable range, this is used by Gan-Gomez [GG14] to establish certain cases of the Sakellaridis-Venkatesh conjecture for spherical varieties for classical groups.

2. Classical dual pairs

Let k be a local field and let $|\cdot|$ denote its absolute value, let D=k, or a quadratic field extension of k or the quaternion division k-algebra, and let $x \mapsto \overline{x}$ be its canonical involution. We have the reduced trace map $Tr: D \to k$ and the reduced norm map $Q: D \to k$, if $D \neq k$ then $Tr(x) = x + \overline{x} \in k$ and $Q(x) = x \cdot \overline{x} \in k$.

Let V, W be two right D-modules, we will denote the set of right D-modules between V and W by $\operatorname{Hom}_D(V, W)$ which consists of

$$\{T: V \to W \mid T(v_1a + v_2b) = T(v_1)a + T(v_2)b \text{ for all } v_1, v_2 \in V, a, b \in D\}$$

we can define $\operatorname{Hom}_D(V,W)$ for two left D-modules in the same way. From now on, we will focus on the right D-modules. Set

$$GL(V, D) = \{ T \in \operatorname{End}_D(V) \mid T \text{ is invertible} \}$$

Let V' be the set of right D-linear functionals on V, there is a natural left D-module structure on V' given by

$$(a\lambda)(v) = a\lambda(v)$$

for all $a \in D$, $v \in V$ and $\lambda \in V'$. Given $T \in \text{Hom}_D(V, W)$, we can define an element in $\text{Hom}_D(W', V')$, we will still denote it by T. This correspondence give natural isomorphisms between $\text{End}_D(V)$ and $\text{End}_D(V')$.

Definition 2.1. Let $\epsilon = \pm 1$, we say that (V, B) is a right ϵ -Hermitian D-module if V is a right D-module and B is an ϵ -Hermitian form, that is $B: V \times V \to D$ is a map such that

• B is sequilinear: for all $v_1, v_2, v_3 \in V$, $a, b \in D$

$$B(v_1, v_2a + v_3b) = B(v_1, v_2)a + B(v_1, v_3)b$$

$$B(v_1a + v_2b, v_3) = \overline{a}B(v_1, v_3) + \overline{b}B(v_2, v_3)$$

• B is ϵ -Hermitian:

$$B(v, w) = \epsilon \overline{B(w, v)}$$

• B is nondegenerate.

1-Hermitian D-modules will be called Hermitian, while the -1-Hermitian D-modules are called skew-Hermitian. Given a right ϵ -Hermitian D-module (V, B), we will define

$$G(V,B) = \{ g \in GL(V) \mid B(gv,gw) = B(v,w) \text{ for all } v,w \in V \}$$

Given a right ϵ -Hermitian D-module (V, B), we can construct a left ϵ -Hermitian D-module (V^*, B^*) as follows: as a set V^* is $\{v^* \mid v \in V\}$, we give V^* a left D-module structure by setting

$$v^* + w^* = (v + w)^*, \ av^* = (v\overline{a})^*$$

for all $v, w \in V$ and $a \in D$. And we set

$$B^*(v^*, w^*) = \overline{B(w, v)}$$

Date: July 2024.

for all $v, w \in V$.

A *D*-submodule $X \subset V$ is said to be *totally isotropic* if $B|_{X \times X} = 0$, if X is a totally isotropic submodule then there exists a totally isotropic submodule $Y \subset V$ such that $B|_{X \oplus Y \times X \oplus Y}$ is nondegenerate.

Let (V, B_V) be a right ϵ_V -Hermitian D-module and let (W, B_W) be a right ϵ_W -Hermitian D-module such that $\epsilon_V \epsilon_W = -1$, then on the k-vector space $V \otimes_D W^*$ we can define a symplectic form B by

$$B(v_1 \otimes \lambda_1, v_2 \otimes \lambda_2) = \operatorname{Tr}(B_W(w_1, w_2) B_V^*(\lambda_2, \lambda_1))$$

for all $v_1, v_2 \in V$ and $\lambda_1, \lambda_2 \in V^*$, we let

$$Sp(V \otimes W^*) = \{g \in GL(V \otimes W^*) \mid B(gv, gw) = B(v, w) \text{ for all } v, w \in V \otimes W^*\}$$

there is a natural map $G(V) \times G(W) \to Sp(V \otimes W^*)$ given by

$$(g_1, g_2) \cdot v \otimes \lambda = g_1 v \otimes \lambda g_2^*$$

we will use this map to identify G(V) and G(W) as subgroups of $Sp(V \otimes W^*)$ and these two subgroups are commutants of each other, this is an example of reductive dual pair.

The group $Sp(V \otimes W^*)$ has an S^1 -cover $Mp(V \otimes W^*)$ which is called a metaplectic group, it is known that this S^1 -cover splits over the subgroups G(V) and G(W), except when V is an odd-dimensional quadratic space, in which case it doesn't split over G(W). The splitting are not necessarily unique.

Assume that there is a complete polarization $W=E\oplus F$ where E,F are complementary isotropic subspaces of W, let

$$P = \{ p \in G(W) \mid p \cdot E = E \}$$

be the Siegel parabolic subgroup of G(W) and let P=MN be its Langlands decomposition. Given $\epsilon=\pm 1$, we set

$$\operatorname{Hom}_D(F, E)_{\epsilon} = \{ T \in \operatorname{Hom}_D(F, E) \mid T^* = \epsilon T \}$$

then we have

$$\operatorname{Hom}_D(F, E) = \operatorname{Hom}_D(F, E)_1 \oplus \operatorname{Hom}_D(F, E)_{-1}$$

now we have

$$M = \left\{ \begin{pmatrix} A & \\ & (A^*)^{-1} \end{pmatrix} \mid A \in GL(E) \right\}$$

and

$$N = \{ \begin{pmatrix} 1 & X \\ & 1 \end{pmatrix} \mid X^* = -\epsilon_W X \} \cong \operatorname{Hom}_D(F, E)_{-\epsilon_W}$$

3. OSCILLATOR REPRESENTATION

Fix a nontrivial unitary character χ of k, associated with this character there exists a very special representation of the metaplectic group, the oscillator representation Π of $Mp(V \otimes W^*)$, restricting to $G(V) \times G(W)$, we get

(3.1)
$$\Pi|_{G(V)\times G(W)} = \int_{G(W)^{\wedge}} \pi \otimes \Theta(\pi) \ d\mu_{\theta} \ (\pi)$$

here $\Theta(\pi)$ is a possibly zero, possibly reducible unitary representation of G(V), we will call the map Θ the L^2 -theta correspondence.

By studying the relation between the smooth and unitary theta correspondence, one can show that the L^2 -theta correspondence induces a map

$$\Theta: G(W)^{\wedge} \longrightarrow R_{\geq 0}(G(V)^{\wedge})$$

where $R_{\geq 0}(G(V)^{\wedge})$ is the Grothendieck semigroup of unitary representations of G(V) of finite length. If k is not 2-adic, Θ takes value in $G(V)^{\wedge} \cup \{0\}$.

Let (V, B_V) and (W, B_W) as defore, if we assume now that there is a totally isotropic D-module $X \subset V$ such that $\dim_D(X) = \dim_D(W)$, in other words, the pair (G(V), G(W)) is in the stable range, then the map

$$\Theta: \hat{G}(W) \longrightarrow \hat{G}(V)$$

can be understood in terms of the result of Jianshu Li, the measure μ_{θ} is also known in this case, it is precisely the Plancherel measure of the group G(W).

First note we have the following classification of irreducible dual pairs: let W be a vector space endowed with a non-degenerate symplectic form \langle,\rangle , and Tr : $D \to F$ the trace map

Theorem 4.1. ([How89]) Let G, G' be an irreducible dual pair in Sp(W), then either

• There are a division algebra D with involution ι , vector spaces V and V', and semi-linear forms (,) and (,)', one hermitian and one skew-hermitian, such that $W = V \otimes_D V'$, the symplectic form is given by

$$\langle v_1 \otimes v_1', v_2 \otimes v_2' \rangle = tr((v_1, v_2) \cdot (v_2', v_1'))$$

and G is identified with the isometry group of (,), G' is identified with the isometry group of (,)'.

• There is a division algebra D and a complete polarization $W = U \oplus U^*$ preserved by $G \cdot G'$, and isomorphisms $U \cong V \otimes_D V'$, $U^* \cong V^* \otimes_D V'^*$, where V, V' are vector spaces over D, and we can identify G with $GL_D(V)$ and G' with $GL_D(V')$.

We will call the first case the type I dual pairs and the second case type II dual pairs. In [], Howe actually showed that every dual pair in Sp_{2n} is the direct sum of irreducible ones in an essentially way and the irreducible dual pairs are given above.

Let G, G' be an irreducible type I dual pair in Sp(W) with $W = V \otimes V'$, let ω be the oscillator representation attached to some character ψ realized on the Hilbert space \mathcal{H} . We want to understand when is the unitarity preserved under the duality correspondence.

If $\pi \otimes \pi'$ occurs in the discrete spectrum, then π and π' are unitary, it can be shown that if $\pi \otimes \pi'$ occurs in the discrete spectrum and $\dim_D V \leq \dim_D V'$ then π must belong to the discrete series of \tilde{G} .

Let ω_t be associated to the character ψ_t and realized on \mathcal{H}_t , let σ be an irreducible admissible representation \tilde{G}' realized on V_{σ} . If σ occurs in the duality correspondence, we let $\theta(\sigma)$ be the corresponding representation of \tilde{G} . Otherwise, we set $\theta(\sigma) = 0$. Consider the algebraic tensor product $\mathcal{H}_t^{\infty} \otimes V_{\sigma}$ and its dual $\mathcal{H}_{-t}^{\infty} \otimes V_{\sigma^*}$. The canonical pairing between \mathcal{H}^{∞} , V_{σ} and $\mathcal{H}_{-t}^{\infty}$, V_{σ^*} give rise to a pairing $\{,\}$ between $\mathcal{H}_t^{\infty} \otimes V_{\sigma}$ and $\mathcal{H}_{-t}^{\infty} \otimes V_{\sigma^*}$, now consider the form

$$(4.1) \qquad (\Phi, \Phi')_{\sigma} = \int_{\tilde{G}'} \{\omega(x)\Phi, \ \sigma^*(x)\Phi'\} \ dx$$

suppose it converges, then it factors through

$$[(\mathcal{H}_t^{\infty} \otimes V_{\sigma})/R] \times [(\mathcal{H}_{-t}^{\infty} \otimes V_{\sigma^*})/R^*]$$

and defines a non-degenerate, \tilde{G} -invariant form. If σ is unitary, then there will be a conjugate linear isomorphism from $\mathcal{H}_t^{\infty} \otimes V_{\sigma}$ to its dual, and hence a non-degenerate \tilde{G} -invariant hermitian form, we denote $\pi(\sigma)$ the action of \tilde{G} on the quotient space $\mathcal{H}_t^{\infty} \otimes V_{\sigma}/R$.

Now we assume that for G' the smaller member of (G, G'), the Witt index of $V \ge \dim_D V'$. We assume the local field $F \ne \mathbb{C}$, and ϵ the unique non-trivial character of the kernel of the covering map $\tilde{G} \to G$. We deonte $(\tilde{G}_{\epsilon})^{\wedge}$ the set of irreducible *genuine* unitary representations of \tilde{G} .

Theorem 4.2. ([Li89]) Suppose G, G' is in the stable range with G' the smaller number. Exclude the case $G = O(2n, 2n), G' = Sp_{2n}$ and σ the trivial representation, we have

- $\pi(\sigma) = \theta(\sigma) \neq 0$ for all $\sigma \in (\tilde{G}_{\epsilon})^{\wedge}$.
- duality correspondence gives an injection $(\tilde{G}'_{\epsilon})^{\wedge} \hookrightarrow (\tilde{G}_{\epsilon})^{\wedge}$.
- Let G'_1 be the isometry group of another form $(V'_1, (\cdot,)'_1)$ and G, G'_1 also forms a reductive dual pair in the stable range, then the image of $(\tilde{G}'_{\epsilon})^{\wedge}$ is disjoint from the image of $(\tilde{G}'_1)^{\wedge}$ unless V' and V'_1 are isometric.

The main idea in the proof of this theorem is to show that the hermitian form defined by (4.1) is semipositive definite and non-zero under the stated conditions.

Przebinda has used similar ideas to establish the unitarity of $\theta(\sigma)$ for a few cases beyond the stable range. It is interesting to make a deeper study of the form (4.1) and see whether it always defines a non-negative form whenever σ is unitary and the integrals converge.

References

- [GG14] Wee Teck Gan and Raul Gomez. A conjecture of sakellaridis—venkatesh on the unitary spectrum of spherical varieties. Symmetry: Representation Theory and Its Applications: In Honor of Nolan R. Wallach, pages 185–226, 2014.
- [How89] Roger Howe. Transcending classical invariant theory. Journal of the American Mathematical Society, 2(3):535–552, 1989.
- $[Li89] \hspace{0.5cm} \textbf{Jian-Shu Li. Singular unitary representations of classical groups.} \hspace{0.1cm} \textit{Inventiones mathematicae}, 97(2):237-255, 1989.$