
THE SYMPLECTIC REPRESENTATION
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1. Introduction

This is a study note for Leslie’s paper [Les24], where he defined a Galois action on the dual hyperspherical
varieties for certain classes of symmetric varieties using the theory of geometric cocycle.

2. G-inner class for spherical varieties

For a characteristic zero field k and X a smooth affine algebraic variety over k with G a connected
reductive algebraic group over k acting algebraically on X.

Assume that X is G-homogeneous with X(k) ̸= ∅. Fix a base point x0 ∈ X(k) and let StabG(x0) = H,
this induces an isomorphism X ∼= H\G identifying H · 1 = x0. A standard calculation shows that

X(k) =
⊔

s∈ker1(H,G;k)

xs ·G(k)

where ker1(H,G; k) = ker[H1(k,H) → H1(k,G)] and xs ∈ X(k) satisfying Hs = StabG(xs) is obtaining by
twsiting H by a 1-cocycle in the class s. In particular, all stabilizers are pure inner twists of H. We may
define

AutG(X) −→ Out(X) ⊂ Out(H)

denote by Ab
X the kernel of this map.

Definition 2.1. Suppose that X = H\G and let X ′ = H ′\G be a G-form of X, we say X ′ is a G-inner form

if there exists a choice of ψ such that the cocycle cX,X′ ∈ Z1(k,AutG(X)) takes value in Ab
X(k). A G-form

of X which is not a G-inner form is called a G-outer form of X = H\G.

Remark 2.2. To obtain a more useful definition of the inner forms ofX, it is necessary to include homogeneous
spherical varieties for the inner forms of G.

Lemma 2.3. Two G-forms X ′ = H ′\G and X = H\G are G-equivariant isomorphic if and only if H and
H ′ are pure inner forms with H ′ corresponding to a class in ker1(H,G; k).

Lemma 2.4. Suppose that G is a reductive k-group and suppose that X = H\G is a homogeneous k-variety
and let X ′ be a G-form of X, then the cocycle cX,X′ induces the trivial cohomology class in H1(k,OutX(H))
if and only if X and X ′ are G-inner forms.

Proposition 2.5. Suppose that G is quasisplit and that X = H\Gk is a spherical homogeneous space of
Gk. Assume that the corresponding ∗-action of {σ∗}σ∈Γ determined by G preserves ΩX . Then for any lift

αD of the Γ-action from Ω to a continuous action on D(X), there exists a G-equivariant k-model X of X
inducing αD. Moreover, X(k) ̸= ∅, so that X = H\G for a k-rational subgroup H ⊂ G.

The following is an important example which will motivate our later definition of the geometric cocycle.

Example 2.6. Let E/k be a quadratic extension of fields and let (V, ⟨·, ·⟩) be a two dimensional Hermitian
E-vector space containing an isotropic line. Let G = U(V ) denote the corresponding quasi-split unitary
group. We assume that the Hermitian form is represented by the matrix

J = ϵ

(
1

−1

)
, ϵ ∈ Etr=0
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Thus G = {g ∈ GL(V ) : Jg−tJ−1 = g}, now we consider the two involutions

θt = Ad

(
t−1

t

)
, t ∈ {1, ϵ}

we compute

Ht := Gθt = {
(
a b
t2b a

)
: Nm(a)− t2Nm(b) = 1, ab = ab}

so that H1
∼= ResE/k(Gm) while Hϵ

∼= Nm1
E/k(Gm)2.

We have

Xt = Ht\G = {
(

x y
−t2y z

)
: x, y, z ∈ k, xz + t2y2 = 1}

then AX
∼= A with the canonical map A → AX being the squaring map. In particular, ∆n

X = {2α}. Since
{−I} ∈ X(k), we see that α ∈ χ. The simple calculation shows that the divisor {z = 0} is stable under
the upper triangular Borel subgroup with cocharacter ω̌ = α̌

2 ∈ X∗(AX), geometrically with two irreducible
components {D1, D2} = D(Xt).

The two symmetric k-varieties Xt become isomorphic upon base changing to E, so that they have iso-
morphic homogeneous spherical data

ΩX = (2X∗(A), {α}, ∅, {(ω̌, {α})})
and the fiber (ρ× ζ)−1(ω̌, {α}) = {D1, D2} consists of two colors in Xk, note that

Xt,{z=0}(k) =

{±

(
x 1

−1

)
} : t = 1

∅ : t = α, since ϵ2 /∈ (k×)2

thus the Γ-action on {D1, D2} is trivial when t = 1 and acts non-trivially through the quotient Gal(E/k)
when t = ϵ.

We can define the doubling autormophism group Autd(X) of X: for H geometrically connected

Autd(X) =
∏
i∈IX

Reski/k(µ2)

In general, we can define the doubling automorphism group as

Autd(X) := Autd(X
◦)/Autd(π0(H))

Lemma 2.7. Suppose that X = H\G is spherical and that H is geometrically connected. In the long short
exact sequence on cohomology, the map

H1(k,AX) −→ H1(k,Autd(X))

is surjective.

Conjecture 2.8. Suppose that G is a quasisplit reductive k-group and X = H\G is a homogeneous spherical
G-variety, then the map

H1(k,AX) −→ H1(k,Autd(X))

is surjective.

To two G-inner forms X and X ′ of X, we can associate to them µd
X and µd

X′ two geometric cocycles, if
π0(H) is trivial, then lemma 2.7 implies that there exist G-forms of X associated to each geometric class as
soon as G-form exists, which occurs as soon as the ∗-action of (G,A) preserves the combinatorial data ΩX

by proposition 2.5. Conjecture 2.8 asserts this should hold for general H.

Definition 2.9. Suppose that G is a quasisplit reductive k-group and X is a homogeneous spherical G-
variety, we say that X is well adapted if the natural morphism

Out(X) −→ Autd(X)

is an isomorphism.
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In particular, when X is well-adapted and G is quasisplit, the data

(ΩX , [µ
d
X ]) = (χ,∆X ,Ω

(1),Ω(2), [µd
X ])

with [µd
X ] ∈ H1(k,Autd(X)) determines a k-form X up to G-inner form.

Definition 2.10. Suppose that G is k-simple, simply-connected group over k and that θ is an involution on
G. We say that θ is an involution of Chevalley type if the spherical root system satisfying that rk(AX) > 1
and there is at most one Galois orbit of spherical roots Γ · αX ⊂ ∆X not of type N .

More generally, suppose G is a connected reductive group and θ is an involution, and X is a symmetric
variety associated to θ, we say that X has a factor of Chevalley type if Xsc has a k-simple factor of Chevalley
type.

Theorem 2.11. Suppose that G is quasisplit over k and that X = H\G is a symmetric G-variety that has
no factors of Chevalley type, then X is well adapted.

Theorem 2.12. Suppose that k is perfect and G is quasisplit over k and that X = H\G is a symmetric
variety. There exists a G-inner form Xqs of X and x ∈ Xqs(k) such that the connected component of the
identity of StabG(x) = Hqs is quasisplit over k.

Let G be a quasisplit reductive group over k with k-rational involution θ, on the basis of theorems 2.11
and 2.12, we impose the following restriction

Assumption 2.13. Assume that the symmetric Gsc-variety Xsc = Hsc\Gsc contains no simple factors of
Chevalley type and the conjecture 2.8 holds for X.

3. The dual group of a spherical variety

Let G be a connected reductive group over k, let X = H\G be a spherical variety and let ΩX =
(χ,∆X ,Ω

(1),Ω(2)) be the homogeneous spherical datum determined by a choice of a Borel pair (A,B),
passing to the normalized root system, Sakellaridis and Venkatesh showed that (χ̌SV ,∆SV

X , χSV ,∆SV
X ) is a

based root datum.

Definition 3.1. The dual group of the G-variety X is the connected complex group ǦX associated to the
dual based root datum (χ̌SV , ∆̌SV

X , χSV ,∆SV
X ).

Now the surjection A → AX produces a canonical morphism ǍX → Ǎ, considering the inclusions of
lattices

χ ⊂ χSV = χ+ Z∆SV
X ⊂ X∗(T )

we obtain a sequence
ǍX → ǍX → Ǎ

Equip the dual group Ǧ of G with a pinning eα∨ of g∨α∨ for each α ∈ ∆. For each σ ∈ ∆X , Knop defines a
one dimensional subspace g∨σ̌ of g∨ by

(3.1) g∨σ̌ =


g∨σ̌ : σ ∈ R+

[g∨β∨ , eδ∨1 − eδ∨2 ] : σ is of type Dn≥3

[g∨β∨ , 2eδ∨1 − eδ∨2 ] : σ is of type B
′′

3

C(eδ∨1 − eδ∨2 ) : σ is of type D2

here β∨ := γ∨1 − δ∨1 = γ∨2 − δ∨2 when σ is of type G. We remark that a choice is made in the case of type D2

roots.

Definition 3.2. A homomorphism φX : ǦX → Ǧ is distinguished if φX |ǍX
= φA and φ(g∨X,σ̌) = g∨σ̌ as

defined before.

Theorem 3.3. Suppose that X is a spherical G-variety, then distinguished morphisms φX exist, moreover,
they are unique up to ǍX-conjugacy, the image

Ǧ∗
X := φX(ǦX)

is a well-defined subgroup of Ǧ independent of φX .
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We record the following property of the dual group

Proposition 3.4. Suppose that X and Y are spherical G-varieties and assume that there exists a dominant
morphism X → Y , there exists a unique homomorphism with finite kernel ǦY → ǦX which is compatible
with the homomorphisms to Ǧ.

The set of parabolic roots ∆p
X corresponds to a Levi subgroup A ⊂ LX ⊂ G and a dual Levi subgroup

ĽX ⊂ Ǧ, our choice of a pinning of Ǧ induces one on ĽX , in particular, the pinning determines a principal
homomorphism ιX : SL2 −→ ĽX . In particular, the pinning determines a principal homomorphism ιX :
SL2 → ĽX . It was shown that the images of φX and ιX commute with each other in Ǧ, we thus obtain a
morphism

ξX : ǦX × SL2 −→ Ǧ

The results of Knop also indicate how to extend this notion to incorporate the Γ-action on ǦX , viewed as
a subgroup of Ǧ, there is a unique Γ-action on ĜX such that the inclusion ĜX intertwines with the L-action
on Ǧ, we denote the corresponding semi-direct product by

LĜX ↪→ LG

though this is arguably inappropriate as the Γ-action can fail to preserve the pinning in some cases. The
additional requirement that φX preserves the embeddings forces a unique Γ-action on ǦX with the property
that the morphism ξX intertwines with the action with the above action on ĜX . We can thus define the
Galois form of the L-group to be

LX := ǦX ⋊ Γ

with respect to this unqiue action. The map ξX extends uniquely to a morphism

LξX : LX × SL2(C) −→ LG

Remark 3.5. As noted above, Knop fixes the choice of image gσ̌ for all σ ∈ ∆X of type D2, which we adopt
here. It is worth mentioning that other choices relate to replacing H-periods with (H,χ)-periods for certain
characters χ of H.

4. The symplectic representation SX

We fix a choice of a distinguished morphism φX : G∨
X → ĜX compatible with ǍX → Ǎ and pinning

induced of Ǧ. This induces Γ-stable Borel subgroups for Ǧ, ĜX and G∨
X denoted by B̌, B̂X and B̌X .

Moreover B̂X is θ-stable and we have φX(B̌) ⊂ B̂X .
Let D(X) be the set of B-colors of X and let

ρ× ζ : D(X) −→ X∗(AX)× P(∆)

be the cocharacter map, Γ acts on ∆ and hence on P(∆̌).
Recall ∆dist

X the set of distinguished roots, so that by theorem 6.1

OutX(H) ∼=
∏
i∈IX

Reski/k µi

where IX is the set of Γ-orbits in ∆dist
X . Using the proposition B.7, there us a corresponding subset Σ̌dist

X ⊂
ρ(D(X)) such that for every α ∈ ∆dist

X , 1
2 α̌ ∈ Σ̌dist

X .

Definition 4.1. We define ∆̌dist
X = { cα

2 α̌ ∈ ∆dist
X } by rescaling elements 1

2 α̌ to the unique minimal multiple
cα
2 α̌ ∈ X̌SV , here we note that XSV := X∗ + Z∆SV

X .

We define SX as the unique representation of G∨
X satisfying

SX = ⊕λ∈sX V (λ̌)⊗M(λ̌)

where

• sX = {highest weights contained in WX · ∆̌dist
X }.

• the multiplicity space M(λ̌) has a basis indexed by the colors D ∈ D(X) satisfying ρ(D) = 1
2 α̌ for

any α̌ lying in the WX -orbit of 2
cα
λ̌.
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We will construct an action of LX on SX . There is a canonical decomposition

∆dist
X =

⊔
i∈IX

Oi

and for each i ∈ IX , there is a canonical quadratic character µi : Γi → {±1}. For any α ∈ Oi, we let
µα : Γα → {±1} be the corresponding quadratic character on the stabilizer. Set D(X)dist ⊂ D(X) be the
set of colors D such that ρ(D) ∈ Σ̌dist

X .

Proposition 4.2. Suppose X = H\G is a symmetric variety with H geometrically connected. Then there
exists a unique LX representation on SX extending the algebraic action of ǦX such that

• there is an isomorphism of Γ-representations

SB̌X

X
∼= C[D(X)dist]

where for α ∈ ∆dist
X \∆(2)

X and σ ∈ Γα we have σ · Dα = µα(σ)Dα where Dα is the unique color
satisfying ρ(Dα) =

1
2 α̌.

• there is a symplectic structure on SX such that LX acts by symplectic morphisms.

The proof relies on the classification of symmetric varieties. The proof of this proposition relies on
the classification of symmetric varieties on a crucial way, in particular we use the calculation of colors of
symmetric varieties in section B.2 to reduce to the case of type C root systems in lemma 4.3 since these are
the only cases where a distinguished root occurs for symmetric varieties.

Lemma 4.3. Suppose that G is quasisplit and X = H\G is a symmetric variety. Fix α ∈ ∆dist
X and let

Γα ⊂ Γ denote its stabilizer, set kα/k be the associated field extension, then there exists a unique kα-rational
reductive normal subgroup Gα ⊂ G, stabilized by θ such that

• If Hα := H ∩ Gα and Xα := Hα\Gα, there exist surjective morphisms πα, πα,X fitting into a
commutative diagram

ǦX
//

��

Ǧ

��

ǦXα
// Ǧα

• let λ̌α ∈ sX be the unique dominant weight of ǦX associated to α, then the ǦX-action on the highest
weight module V (λ̌α) factors through πα,X .

• Assume that X satisfies assumption 6.21. The derived subgroup of Ǧα is of type C. The correspond-
ing highest weight representation of ǦX is minuscule and symplectic.

We impose the assumption 6.21, fix α ∈ ∆dist
X as in the previous lemma, since (Gα, Xα) is kα-rational,

the morphism π̌α is Γα-equivariant with respect to the given action on ǦX and a unique Γα-action on ǦXα
.

We now extend the Γα-action on ǦXα to the representation Vα of ǦXα . We may assume that k = kα and
G = Gα, therefore assuming Gder is absolutely simple. In particular, ∆dist

X = {α}.
By lemma 4.3, ǦX,der is simple of type C and acts on the standard representation so that we must have

ǦX,der = Sp2n(C). In this case the Γ-action on ǍX,ad is trivial as Sp2n(C) has trivial outer automorphism

group, the ∗-action on ΦX is trivial. In particular, the Γ-action on ǦX preserves our fixed pinning {xγ̌}γ̌∈∆̌SV
X

induced by B̌X up to sign, so that the action is completely determined by a unique set of characters

χγ : Γγ −→ {±1}

such that σxγ̌ = χγ(σ)xγ̌ for σ ∈ Γγ = StabΓ(γ̌) and γ̌ ∈ ∆̌SV
X .

Lemma 4.4. Let χ : Γ → ǍX,ad denote the character uniquely determined by

σxγ̌ = χγ(σ)xγ̌ = Ad(χ(σ))xγ̌

for all γ̌ ∈ ∆̌SV
X . For any quadratic character ϵ : Γ → {±1}, there exists a natural lift

χ̃ϵ ∈ Hom(Γ, ǍX [2]) ∼= H1(Γ, ǍX [2])
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Continuing the assumptions of the lemma, let λ̌α ∈ X∗(ǍX) be the dominant weight associated to
α ∈ ∆dist

X , we define D(α) ⊂ D(X) to be those colors satisfying ρ(D) = 1
2 α̌, we define the Γ-representation

M(α) := C[D(α)]

where

• If α ∈ ∆
(2)
X , M(α) is determined by the Γ-action on the basis D(α), in this case, we take ϵ ≡ 1 in

the lemma and use χ̃1 to give a ǦX ⋊ Γ-action on Vα ⊗C Mα by letting σ ∈ Γ acts by

σ(v ⊗m) = χ̃1(σ)v ⊗ σ(m)

• If α ∈ ∆dist
X \∆(2)

X , then D(α) = 1 and M(α) = C, we can take ϵ = µα so that the ǦX ⋊ Γ acts on
Vα ⊗C M(α) = Vα by letting σ ∈ Γ act by

σ(v) = χ̃µα
(σ)(v)

this representation is symplectic.

We now return to the general setting of (G,X) satisfying assumption 2.13 and H-connected, for each
Γ-orbit O ⊂ ∆dist

X of distinguished roots and α ∈ O let ǦX,O be the induced group

ǦX,O = IndΓ/Γα
(ǦXα

) ∼=
∏
Γ/Γα

ǦXα

such that ǦXα,der = [ǦXα
, ǦXα

] = Sp(Vα) where Vα = V (λ̌α) is the vector space of the associated represen-
tation. It follows from lemma 9.6 there exists a Γ-equivariant quotient map

ǦX →
∏

O⊂∆dist
X

ǦX,O

for each Γ-orbit O, we thus obtain a ǦX,O ⋊ Γ representation

SO := IndΓΓα
(Vα ⊗M(α))

and we have a LGX -representaiton on

SX =
⊕

O⊂∆dist
X

SO

via pull back along

ǦX ⋊ Γ →
∏
O

ǦX,O ⋊ Γ

4.1. Application to rationality. The theorem below compares the two k-forms X and X ′ of a given
symmetric Gk-variety X, we say that X and X ′ are normally related to (A,B) if the rational involutions
θ and θ′ associated to X and X ′ are both normally related to (A,B). Since we may conjugate θ and θ′ by
elements of G(k) to ensure this, it leads to no loss in generality.

Theorem 4.5. Suppose that G is quasisplit over k and suppose that X = H\Gk is a symmetric Gk-

variety satisfying assumtpion 6.21 and that H is connected, consider two k-rational G-forms X = H\G and

X ′ = H ′\G of X, assume X and X ′ are both noramlly related to (A,B), then we have ĜX = ĜX′ . Given a
pair of distinguished morphisms φX and φX′ , there is a canonical isomorphism fX : LX ∼= LX ′ such that
φX = φX′ ◦ fX .

Suppose there exists an fX-equivariant isomorphism fS : SX −→ SX′ , then X and X ′ are G-inner forms.

We sketch the proof here: Let θ and θ′ be associated involutions for X and X ′ respectively, we may assume
that θ and θ′ are both normally related to (A,B), since we have assumed that there is a Gk-equivariant
isomorphism Xk

∼= X ′
k
, this implies

∆X = ∆X′ , ∆̂X = ∆̂X′ , and θ|A = θ′|A
moreover AX

∼= AX′ .
The construction of the associated group relies only on the inclusion of root system generated by the

coroots of the associated roots of X into the root system of Ǧ. Thus we obtain a canonical identification
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ĜX = ĜX′ . Similarly the construction of ǦX and the pinned action defined in (3.1) are combinatorial and
depend only on the k-group structure of G, so there exists fX : LX ∼= LX ′. Since distinguished morphisms
have a finite kernel determined by the kernel of ǍX → Ǎ, we see that for any choice of such distinguished
mrphisms there exists a unique fX such that φX = φX′ ◦ fX .

Assume now that we are given an fX -equivariant isomorphism fS : SX −→ SX′ . In particular, this
restricts to an isomorphism of representations of algebraic groups (proposition 4.2)⊕

α∈∆̌dist
X

V (λ̌α)⊗M(α) ∼=
⊕

α′∈∆̌dist
X′

V (λ̌α′)⊗M(α′)

which induces a bijection ∆dist
X

∼= ∆dist
X′ by highest weight theory, this is uniquely determined by the isomor-

phism fX . This is Γ-equivariant and we obtain an identification of Galois orbits Γ · γi 7→ Γ · γ′i, recall that
there is an isomorphism of Γ-modules

S
(B̌X)
X

∼=
⊕

Oi⊂∆dist
X

IndΓΓi
(M(αi))

To recover the character µi, note that the Γi-action on M(αi) is uniquely determined by this character and
there is a canonical Γi-equivariant morphism

IndΓΓi
(M(αi)) −→M(αi)

[f : Γ →M(αi)] 7−→ f(1)

from which we may compute µi, now passing to the weight spaces, we obtain a Γi = Γ′
i equivariant iso-

morphsim M(αi) ∼=M(α′
i), in particular µi = µ′

i, all together we see that X and X ′ are inner forms.

References

[Les24] Spencer Leslie. Symmetric varieties for endoscopic groups. arXiv preprint arXiv:2401.09156, 2024.

7


	1. Introduction
	2. G-inner class for spherical varieties
	3. The dual group of a spherical variety
	4. The symplectic representation SX
	4.1. Application to rationality

	References

