
SPHERICAL ROOT SYSTEMS

RUI CHEN

1. Introduction

This is a note for the paper [KK16], which is a unification of the Borel-Tits theory for reductive group
over general fields and Luna’s theory for spherical varieties over algebraically closed field of characteristic
zero.

The main application in the [KK16] is to study the embedding theory of spherical varieties, while my
main motivation is to study the spectrum of spherical varieties.

2. Notation

We will fix k a characteristic 0 field, and k̄ its algebraic closure, Γ = Gal(k̄/k) its Galois grouup, G a
connected reductive group over k, X a G-spherical variety over k.

3. Root systems for reductive groups

In this section, I will introduce the absolute and restricted root systems for a reductive group G and
Galois action on the absolute root system.

Let k be a characteristic 0 field, and let G be a connected quasisplit reductive group over k. We fix
B = MAU a Borel subgroup of G over k where U = RuB is the unipotent radical of B and A is a maximal
split subtorus and M is an anisotropic torus, T = MA is a maximal torus of G, the restriction of characters
from T to A defines a surjective map

resA : X∗(T ) −→ X∗(A)

for any Ω ⊂ X∗(T ), we will use the notation res′AΩ := (resAΩ)\{0}. Let Φk̄ = Φ(G,T ) be the associated
root system and we have Φk := res′AΦ the restricted root system with respect to A, we will denote the Weyl
group of Φk̄ by Wk̄(G), and the Weyl group of Φk by Wk(G).

The choice of the Borel subgroup B gives us a set Σk̄ ⊆ Φ of simple roots, and a set of simple restricted
roots Σk := res′AΣk̄.

Remark 3.1. For general reductive group G, we have the set of k-compact simple roots Σ0 := {α ∈
Σk̄| resAα = 0}, which is the set of simple roots for M , since our group G is quasisplit, we have Σ0 = ∅.

The Galois group Γ acts on X∗(T ) and leaves the root system Φk̄ invariant, we have the following property
on the restriction map

Proposition 3.2. For α1, α2 two simple roots in Σk̄, we have resAα1 = resAα2 if and only α1 and α2 belong
to the same Γ-orbit.

Remark 3.3. For general connected reductive group, there is a Γ∗-action, which is defined as: for any γ ∈ Γ,
there is a unique element ωγ ∈ W such that ωγγΣk = Σk, and γ ∗ χ = ωγγ(χ). Since our group G is
quasisplit, the Borel subgroup is defined over k hence the set of simple roots is Galois stable, we can choose
ωγ = 1, the Γ∗-action and Γ are the same.

Example 3.4. ( Root system and restricted root system for SUn)
For the special unitary group G = SU3 over k defined via {g ∈ SL3,ℓ| tgJg = J }, with J = adiag(1,−1, 1).

Then SU3 splits over ℓ.
The maximal torus T is isomorphic to Resℓ/kGm×U(1), it contains a maximal split torusA = diag(a, 1, a−1).

Over k̄, Gk̄
∼= SL3, we will choose the simple roots α1, α2 for Gk̄, we have the root system Φ(G,T ) ⊂ X∗(T ),
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we also have the restricted root system Φ(G,A) ⊂ X∗(A), where Φ(G,A) is the weight space of the torus S
action on the Lie algebra of A. The set of simple restricted roots are {a, 2a} ⊂ X∗(A).

We fix the isomorphisms X∗(T ) ∼= Z3/Z, X∗(A) ∼= Z, and we have the restriction map

resA : X∗(T ) −→ X∗(A)

(n1, n2, n3) 7−→ n1 − n3

In particular, we see that α1, α2 7→ 1, this corresponds to the fact that the simple roots on the same Galois
orbits are mapped to the same image in X∗(A). α1 + α2 7→ 2. The restricted Weyl group Wk is isomorphic
to Z/2Z and it is the Weyl group for the root system Φ(G,A).

Now we consider the special unitary group SU2n defined via {g ∈ SL2n,ℓ| tgJg = J}, where J =
adiag(1,−1, 1,−1, · · · ). Then SU2n splits over ℓ.

The maximal torus T is isomorphic to (Resℓ/kGm)n, and the maximal split torusA = diag(a1, a2, · · · an, a−1
n , a−1

n−1, · · · a
−1
1 ).

We have the root system Φ(G,T ) ⊂ X∗(T ) and the restricted root system Φ(G,A) ⊂ X∗(A).
We fix the isomorphisms X∗(T ) ∼= Z2n/Z, and X∗(A) ∼= Zn, then we have the restriction map

resA : X∗(T ) −→ X∗(A)

(x1, x2, · · ·x2n) 7−→ (x1 − x2n, x2 − x2n−1, · · · , xn − xn+1)

In particular, we note that αi and α2n−i have the same image. The restricted Weyl group is isomorphic to
Sn ⋉ (Z/2Z)n.

4. k-local structure theorem

In this section, we will assume X is a k-dense G-spherical variety. We will define the maximal k-split
torus Ak(X) and the k-valuation cone Vk(X) in this section. As we know, these objects play important roles
in the study of root system over algebraic closure, and the study of the properties of these objects are based
on the parallel approach to algebraic closure, and sometimes reduced to the algebraic closure.

I will state a simplified version of the local structure theorem for spherical varieties for quasisplit groups,
from now on, I will assume G is a quasisplit group over k and B a Borel subgroup over k, T a maximal torus
of B, A a maximal k-split torus of T .

Let’s denote X̊ the unique open Borel orbit of X. As a consequence of the generic local structure theorem,
from [KK] corollary 4.6, we get an isomorphism

X̊ ∼= TX × UP (X)

here TX is the T -orbit of a point x0 ∈ X̊(k).

Definition 4.1. We define the maximal split torus of X to be Ak(X) := A x0, and we define the k-character
lattice of X to be

χk(X) = X∗(Ak(X))

the k-rank of X is defined to be
rkkX := rkχk(X) = dim Ak(X)

The anisotropic kernel Xan of X can be defined to be Xan := Mx0.

It is immediate to see that these defnitions generalize the notion of maximal split torus and anisotropic
kernel in the group case if we view the group as a symmetric spherical variety.

We have the folowing connection between the k̄-character lattice and k-character lattice

Lemma 4.2. We have
resAχk̄(X) = χk(X)

here χk̄(X) = X∗((TX)k̄).

as a corollary of this lemma, we see that the torus Ak(X) is the image of A ⊂ T in TX under the quotient
map

T −→ TX

We denote ak(X) = χk(X)∗ ⊗Q = Hom(χk(X),Q).

Corollary 4.3. The space ak(X) is the image of ak ⊆ ak̄ in ak̄(X).
2



We will introduce the notion of k-invariant valuation.

Definition 4.4. An invariant valuation of a k-dense G-variety X is called k -central if it is trivial on the
subfield k̄(Xan) = k̄(X)AU . The set of k-central valuations is denoted by Vk(X).

We have the following short exact sequence

1 −→ k̄(Xan)
∗ −→ k̄(X)(AU) −→ χk(X) −→ 1

The k-central valuation induces a homomorphism

λv : χk(X) → Q : χf 7→ v(f)

and we get a map ιk : Vk(x) → ak(X).
According to corollary 4.3, we may view ak(X) as a subspace of ak̄(X)

Proposition 4.5. Let X be a k-dense G-spherical variety, then:

• The map ι is injective.
• Considering Vk(X),Vk̄(X) as subsets of ak(X) and ak̄(X), then ak(X) = Vk̄(X) ∩ ak(X).

Note over algebraic closure ιk̄ is injective, together with the inclusion ak(X) → ak̄(X) we know that ι is
injective.

From 4.5, we see that Vk(X) is a finitely generated convex cone in ak(X).
We denote a−k the antidominant Weyl for G with respect to the restricted root system.

Proposition 4.6. Let π : ak → ak(X) be the canonical projection, then π(a−k ) ⊆ Vk(X).

This follows from proposition 4.5 and the corresponding result over k̄.

5. The Weyl group

In this section, we will assume X is a k-dense G-spherical variety over k and G a quasisplit connected
reductive group over k, B a fixed Borel subgroup over k, T a maximal torus of B, and we choose the
associated parabolic subgroup P (X) over k.

There is a Borel subgroup B and a point x ∈ X(k) such that

A ⊆ T ⊆ Lk

Ak(X) ⊆ TX
∼= Tx

To define the k-Weyl group for X. The strategy is to study the valuation cone Vk(X), which over algebraic
closure we know it is the Weyl chamber for the little Weyl group WX .

First let’s note that the associated parabolic subgroup P (X) can be choosen to be defined over k. We get
a set of k-roots Σp

k(X) ⊆ Σk̄, since P (X) is defined over k, we have Σp
k(X) is Γ-stable.

We make the following definition of k-little Weyl group

Definition 5.1. We define

Wk(X) := NWk̄(X)(ak(X))/CWk̄(X)(ak(X))

We have a parallel result over algebraic closure

Theorem 5.2. Let X be a k-dense G-spherical variety, then Vk(X) is a fundamental domain for the action
of Wk(X) on ak(X).
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6. The root system over k

We will fix X an k-dense G-spherical variety, G a connected reductive group over k.
In this section, I will recall the construction of root systems in the paper [KK16], just like the group case,

we want to define the restricted root system for spherical varieties and the Galois action on spherical root
system over k̄. We will construct an integral root system for Wk(X) 5.1 the k-little Weyl group, as in the
case over algebraic closure, we face an issue of normalization.

There is an obvious normalization

Definition 6.1. A primitive k-spherical root of X is a primitive element σ ∈ χk such that Vk(X)∩{σ ≥ 0}
is a facet of Vk(X).

We will denote the set of primitive k-spherical roots by Σpr
k := Σpr

k (X), it is in one to one correspondence
with the facets of Vk(X).

The primitive k-root system of X is defined to be

Φpr
k = Φpr

k (X) := Wk · Σpr
k

Since the valuation cone Vk(X) is defined by a set of linearly independent linear inequalities, we have the
following description of Vk(X) based on the primitive k-spherical roots

Proposition 6.2. Vk(X) = {a ∈ ak| σ(a) ≤ 0, for all σ ∈ Σpr
k }.

We have the following lemma

Lemma 6.3. Every σ ∈ Σpr
k is a linear combination σ =

∑
α∈Σk

cαα with cα ∈ Q≥0.

Definition 6.4. The set of α ∈ ΣG such that cα > 0 is called the support of σ.

A weight lattice for a root system Φ with Weyl group W is a lattice Ξ containing Φ with (1− sσ)Ξ ⊂ Zσ
for all σ ∈ Φ, here sσ denotes the reflection about σ. If Φ is a reduced root system, this is equivalent to W
acts trivially on Ξ/⟨Φ⟩Z.

Proposition 6.5. Φpr
k is a reduced root system with Weyl group Wk(X), the set Σpr

k is a set of simple roots
for Φpr

k , the valuation cone Vk(X) is an antidominant Weyl chamber with respect to Σpr
k . The lattice χk is

a weight lattice for Φpr
k .

Proof. Since we know Vk(X) is the fundamental domain for Wk. We only need to show χk is Wk stable,
over k̄, this is the result of [Kno94], over k, this follows from χk = res′Aχk̄. □

For any σ ∈ χk̄, we let σ := resAσ be the restriction of σ to A and

χ0
k̄ = {σ ∈ χk̄(X)| σ = 0}

elements of Σ0
k̄
:= Σk̄ ∩χ0

k̄
will be called the compact spherical roots. The compact spherical spherical roots

can be recovered from the compact simple roots

Σ0
k̄ = {σ ∈ Σk̄| supp(σ) ⊆ Σ0}

we will see later Σ0
k̄
is the set of k̄-spherical roots of Xel.

Example 6.6. If G is a quasisplit group over k, X a G-spherical k-variety, then Σ0
k̄
= ∅ and in this case

Xel = TX .

We have the following result

Proposition 6.7. For X a k-dense G-spherical variety, then

χk̄(Xan) = χ0
k̄(X), Σk̄(Xan) = Σ0

k̄(X)

We define Σk := Σk(X) := res′AΣk̄ = {σ, σ ̸= 0}. In general Σk and Σpr
k are different, see for example in

the group case.
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Now we consider the Galois action on spherical roots, the key is the commutative diagram that we used
in the construction of k-little Weyl group: There is a Borel subgroup B and a point x ∈ X(k) such that

A ⊆ T ⊆ Lk

Ak(X) ⊆ TX
∼= Tx

Proposition 6.8. The set Σk ⊆ χk is linearly independent, moreover, σ = τ ̸= 0 for σ, τ ∈ Σk̄ if and only
if σ and τ are in the same Γ-orbit.

There is a map Σpr
k → Z>0 : σ 7→ nσ such that Σk = {nσσ| σ ∈ Σpr

k }

This generalize the proposition 3.2 from the group case to general spherical varieties.

Proposition 6.9. There is a map Σpr
k → Z>0 : σ 7→ nσ such that Σk = {nσσ | σ ∈ Σpr

k }.

Proof. Vk(X) is also defined by the inequalities σ ≤ 0 with σ ∈ Σk̄, since they are linearly independent, they
form a minimal set of inequalities, so we see that every σ is an integral multiple of an element of Σpr

k . □

Now we proceed to the construction of a root system forWk(X), we define Φk := Wk(X)Σk = Wk(X)res′AΣk,
Φres

k := res′AΦk̄ = res′AWk̄(X)Σk̄. In general, Φres
k̄

is not a root system.
However, we have the following result

Theorem 6.10. Let X be a k-dense G-variety, then

(1) (Φk, χk) is an integral root system, its Weyl group is Wk(X) and Σk is a system of simple roots.
(2) nσ ∈ {1, 2} for all σ ∈ Σpr

k .

Proof. For (1): Let Rk̄ = ⟨Σk̄⟩ and Rk := ResARk̄ = ⟨Σk⟩ be the root lattices, since Rk̄ is Wk̄-stable and
hence N(ak)-stable, we see Rk is Wk-stable. Since the elements of Σk are primitive in Rk, we conclude Φk

is a root system for Wk and Σk is a set of simple roots.
It remains to show χk is a set of weights for Φk, and since χk is Wk stable this means to show Wk acts

trivially on χk/Rk. This clearly holds over k̄, the assertion now follows from the fact that χk/Rk is a quotient
of χk̄/Rk̄.

For (2): Let σ ∈ Σpr
k and σ̃ = nσσ ∈ Σk as σ ∈ χk, it follows from (1) that

2

nσ
= ⟨ 1

nσ
σ̃, σ̃∨⟩ = ⟨σ, σ̃∨⟩ ∈ Z

□

Moreover, one can show that Φk consists precisely of the indivisible elements of Φres
k .

6.1. Remaining question.

Definition 6.11. We will call (χk̄,Σk̄,Σ
0
k̄
) together with the Γ-action the spherical index of X.

It behaves very much like the classical Borel-Tits index but there are some counterexamples. It will be
interesting to investigate this phenomenon further, say from the dual side.

7. Examples of spherical root systems

7.1. Spherical root systems for some spherical varieties of type A. In this section, we examine some
examples of quasisplit forms for symmetric varieties of type A. For the notations related to the special
unitary groups, we keep the same as the previous example 3.4.

In all the examples, G will be a quasisplit connected group over k, B a Borel subgroup of G defined over
k, T a maximal k-torus of G, A a maximal k-split torus of T .
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Example 7.1. Let ℓ/k be a quadratic extension of characteristic zero fields, G = Resℓ/kGL2, X =
Resℓ/kGL2/GL2, we have Xk̄

∼= GL2 × GL2/GL2, we have Σk̄ = {α1 + α2}, here α1, α2 are the two
simple roots of the first and second copy of GL2 with B the product of upper triangular matrices. We have
P (X)k̄ = Bk̄.

X is a Galois symmetric variety with θ(g) = g, for the conjugate θ′ of θ such that θ′(g) = ωℓgωℓ, we have

θ′(B) = B, hence we have Ak(X) ∼= A/Aθ′ ∼= G2
m/Gm with the diagonal embedding of Gm. Σk = Res′AΣk̄ =

{2α1} as α1 and α2 are in the same Γ-orbit. The k-little Weyl group ofX isNWk̄(X)(ak)/CWk̄(X)(ak) = Z/2Z.
We conclude the k-spherical root system of X is of type A1.

Example 7.2. Let ℓ/k be a quadratic extension of characteristic zero fields, G = Resℓ/kGL2, X =
Resℓ/kGL2/U2, here U2 is the quasisplit two dimensional unitary group over k, we have P (X) = B as

Xk̄
∼= GL2 ×GL2/GLι

2 with ι : g 7→ (g, g−t). We have Σk̄(X) = {α1 + α2}.
X is a Galois symmetric variety with θ(g) = J−1g−tJ , for the conjugate θ′ of θ with θ′(g) = g−t, we have

θ′(B) = B, hence Ak(X) ∼= A/Aθ′ ∼= G2
m/{(±1)2}. Σk = {2α1}. The k-little Weyl group of X is Z/2Z.

We conclude the k-spherical root system of X is of type A1.

Example 7.3. Let ℓ/k be a quadratic extension of characteristic zero fields, G = Resℓ/kGL3, X =
Resℓ/kGL3/GL3. Over algebraic closure, let’s choose B the upper triangular Borel subgroup, and α1, α2

the simple roots of the first copy of GL3, α′
1, α

′
2 simple roots of second copy GL3, we have Σk̄(X) =

{α1 + α′
2, α2 + α′

1} and Σk̄ ⊂ X∗((TX)k̄).
X is a Galois symmetric variety with θ(g) = g, for the conjugate θ′(g) = ωℓgωℓ, we have θ

′(B) = B, hence

Ak(X) ∼= A/Aθ′ ∼= G3
m/Gm ×Gm, Σk = {α1 + α2

′}. The k-little Weyl group of X is Z/2Z.
We conclude the k-spherical root system of X is of type A1.

Example 7.4. Let ℓ/k be a quadratic extension of characteristic zero fields, G = Resℓ/kGL3, X =
Resℓ/kGL3/U3, here U3 is the quasisplit unitary group associated with ℓ/k. Over algebraic closure, let’s
choose B the upper triangular Borel subgroup, and α1, α2 the simple roots of the first copy of GL3, α

′
1, α

′
2

the simple roots of second copy of GL3, we have Σk̄(X) = {α1 + α′
1, α2 + α′

2} and Σk̄ ⊂ X∗((TX)k̄).
X is a Galois symmetric variety with θ(g) = J−1g−tJ . For the conjugate θ′ of θ with θ′(g) = g−t, we

have θ′(B) = B. Hence Ak(X) = A/Aθ′
= G3

m/(±1)3, we have Σk(X) = {2α1, 2α2}. The k-little Weyl
group of X is NWk̄(X)(ak)/CWk̄(X)(ak) = S3.

We conclude the k-spherical root system of X is of type A2.

Example 7.5. The spherical variety X = SL2(p+1)/SLp+1 × SLp+1, the Γ-action induced from SU2(p+1)

preserves ΩX , hence it admits a k-form SU2(p+1)/SUp+1 × SUp+1.
The set of spherical roots is Σk̄ = {α1 + α2p+1, · · · 2αp+1}, the set of restricted spherical roots is Σk =

{2α1, 2α2, · · · 2αp+1}.

Example 7.6. The spherical variety X = SL2p+q+1/SLp+q × SLp+1, the Γ-action preserves ΩX , hence it
exists a k-form SU2p+q+1/SUp+q × SUp+1.

The set of simple spherical roots is Σk̄ = {α1+α2p+q, · · ·αp+αp+q+1, αp+1+ · · ·+αp+q}, the set of simple
restricted roots Σk is {2α1, · · · 2αp, αp+1 + · · ·αp+q}.

As a particular example, the symmetric variety SLn+1/SLn has a spherical root α1 + · · · + αn and it is
Galois stable.
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