
INTRODUCTION TO SHIMURA VARIETIES
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1. Introduction

This is my study note for Shimura varieties based on the section 2 from the note of Kaiwen Lan [Lan17]
and the chapter from the thesis of Boxer [Box15].

2. Shimura varieties

Let’s assume G is a connected reductive group over Q, we consider a manifold D with a smooth transitive
action of G(R).

Example 2.1. The group G(R) = SL2(R) acting transitively on the upper half plane

H := { z ∈ C : Im(z) > 0 }
for each z ∈ H, the stabilizer of i ∈ H is SO2(R), so we have

H = SL2(R) · i = SL2(R)/SO2(R)

For any (G,D) as above, and for any open compact subgroup U of G(A∞), we can define the double coset
subspace

XU := G(Q)\D ×G(A∞)/U

where G(Q) acts diagonally on D × G(A∞) from the left hand side, and U acts only on G(A∞) from the
right-hand side.

The group G(A∞) has a natural right action on the collection {XU}U induced by

D ×G(A∞) ∼= D ×G(A∞) : (x, h) 7→ (x, hg)

which maps XgUg−1 to XU as h(gug−1)g = hgu. Such an action provides a natual Hecke actions on the limit
of cohomology groups limH∗(XU ,C). This is crucial for relating the geometry of such double cosets to the
theory of automorphic representations.

Let D+ be a connected component of D, which admits a transitive action ofG(R)+, the identity component
of G(R) in the real analytic topology, let G(R)+ denote the stabilizer of D+ in G(R), let

G(Q)+ := G(Q) ∩G(R)+
which is a subgroup of G(Q) stabilizing D+, it is known that

#(G(Q)+\G(A∞)/U)) < ∞
which means there exists a subset {gi}i∈I of G(A∞) indexed by a finite set I such that we have a disjoint
union

G(A∞) = ⊔G(Q)+giU

then

XU
∼= G(Q)+\D+ ×G(A∞)/U

= ⊔i∈IG(Q)+\D+ ×G(Q)+giU/U

= ⊔i∈IΓi\D+

where Γi := G(Q)+ ∩ giUg−1
i , each Γi is an arithmetic subgroup of G(Q).

If each Γi acts freely on D+, then XU is a manifold because D+ is, this is the case when each Γi is a neat
arithmetic subgroup of G(Q).
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Shimura varieties are not just the double coset spaces XU , for arithmetic applications, it is desirable that
each XU is an algebraic variety over C with a model defined over some canonically determined number field.
This leds to the definition of a Shimura datum (G,D). Consider the Deligne torus S = ResC/R Gm.

Definition 2.2. Let G be a connected reductive group, and require D to be a G(R)-conjugacy class of
homomorphisms

h : S → GR

satisfying the following conditions:

(1) The representation defined by h and the adjoint representation of G(R) on g induces a decom-
position

g = k⊕ p+ ⊕ p−

such that

z ∈ S(R) = C×

acts by 1, z/z and z/z on the three summands.
(2) h(i) induces a Cartan involution on Gad(R).
(3) Gad

R has no non-trivial Q-simple factor H such that H(R) is compact.

Here a Cartan involution θ on a linear algebra group G over R is an involution θ of G such that Gθ(R) is
compact, G has a Cartan involution if and only if G is reductive.

By definition D ∼= G/K∞ for K∞ the stabilizer of h(S), and in practice this is the stabilizer of h(i), from
the axiom for Shimura data this is a maximal compact subgroup of G(R) mod center.

Example 2.3. For G = GL2/Q

h0 : S(R) = C× −→ GL2(R)

z = x+ iy 7−→
(
x −y
y x

)
we have Stabh0

(GL2(R)) = O(2) · R×, this is indeed compact modulo the center.

Given a homomorphism

h : S −→ GR

we can get hC : Gm,C ×Gm,C → GC, we define

µ : Gm,C → Gm,C ×Gm,C → GC

via z 7→ (z, 1).
Fact: There is a one one correspondence between the Gad(R)-conjugacy classes of h : S → GR satisfying

axioms (1) and (2) and the G(C) conjugacy classes of µ : Gm → GC that are minuscule.
Here minuscule, means if we choose T a maximal torus of G, such that µ ∈ X∗(T )+, view µ as X∗(T )+

corresponds to G∨ → GL(Vµ), then all weights in Vµ have multiplicity one.

Remark 2.4. This fact is useful for the classification of Shimura data.

Now we are going to state the beautiful results concerning the canonical models of Shimura varieties

Theorem 2.5. Suppose (G,D) is a Shimura datum, then the whole collection of complex manifolds {XU}
with U varying over among neat open compact subgroups of G(A∞) is the complex analytification of a
canonical collection of smooth quasi-projective varieties over C, moreover the analytic covering map

XU −→ XU ′

where U ⊂ U ′ are given by the complex analytifications of canonical finite etale algebraic morphisms between
the corresponding varieties.

This theorem is proved by constructing the so called Satake-Baily-Borel or the minimal compactifications
of XU or Γ\D+ which are projective varieties over C.

2



Theorem 2.6. Suppose (G,D) is a Shimura datum, then there exists a number field F0 given as a subfield of
C depending only on (G,D), called the reflex field of (G,D) such that the whole collection of complex manifolds
{XU}U with U varying over among neat open compact subgroups of G(A∞), is the complex analytification of
the pull back to C of a canonical collection of smooth quasi-projective varieties over F0, which satisfies certain
additional properties qualifying them as the canonical models of {XU }U , moreover the analytic covering maps

XU → XU ′

when U ⊂ U ′ are also given by the complex analytifications of canonical finite etale algebraic morphisms
defined over F0 between corresponding canonical models.

Remark 2.7. As we will see later 2.1, here the canonical means to be canonical with respect to the embeddings
of tori.

Example 2.8. Let G = GL2, let K = Γ̂0(N) be the subgroup

K = Γ̂0(N) = {
(
a b
c d

)
∈ G(Ẑ) | c ≡ 0 (mod N) }

the determinant map det : G → Gm induces

XK(C) → Q×\{±} × A∞/det(K)

provides a bijection from the geometrically connected components of XK(C) and the right hand side, since

we have det(K) = Ẑ and hence
XK(C) = G(Q)\H± ×G(A∞)/ K

has a single connected component, which can be identified XK(C) with Γ0(N)\H+ where Γ0(N) ⊂ SL2(Z)
is the usual congruence subgroup of matrices that reduce to upper triangular matrices modulo N , for N ≥ 3,
this is the complex points of the smooth, geometrically connected modular curve Y0(N) over Q.

Since the maps XU → XU ′ are algebraic and defined over F0, we have a canonical action of Gal(Q/F0) on
limH∗

et(XU ,Qℓ) which is compatible with the Hecke action of G(A∞). This is an instance of the compatibility
between the Hecke and Galois symmetries.

It is natural to consider the relative setting.

Definition 2.9. We define a morphism of Shimura data

(G1,D1) → (G2,D2)

to be a group homomorphism G1 → G2 and mapping D1 → D2. If D = G1(R) · h0 is the conjugacy class
of some homomorphism h0 : S → G1,R, then this means the composition of h0 with G1,R → G2,R lies in
the conjugacy class D2. If U1 and U2 are open compact subgroups of G1(A∞) and G2(A∞), such that U1

is mapped into U2, then we obtain the corresponding morphism XU1
→ XU2

, this morphism is defined over
the subfield of C generated by the reflex fields of (G1,D1) and (G2,D2).

The most important examples are given by special points or CM points, which are zero-dimensional
special subvarieties defined by the subgroup G1 of G2 that are tori, these are generalizations of the points of
modular curves parametrizing CM elliptic curves with level structures. Zero dimensional Shimura varieties
and special points are important because their canonical models can be defined more directly and hence they
are useful for characterizing the canonical models of Shimura varieties of positive dimension.

Example 2.10. Let E/Q be an imaginary quadratic extension, recall that G(Q) acts on H± via conjugation,
there is a unique point xι ∈ H± with det(xιi) > 0 and whose stabilizer in G(Q) is ι(E×), for example if

E = Q(
√
di), then we can take xι =

√
di ∈ H+, the set of CM-points of level K can be defined as

CMK(C) := {[xι, g]K | g ∈ G(A∞)}
The Gal(Eab/E) action on the set CMK is described by the reciprocity law:

ArtE : E×\A×
E → Gal(Eab/E)

if σ ∈ Gal(Eab/E) and a = (a∞, af ) is such that Art(a) = σ then

σ[xι, g]K = [xι, ι(af )g]
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Let G be a connected reductive group over Q with a Shimura variety ShK(G,X), E its reflex field, if
G = T is a torus, then ShK(T )(C) = T (Q)\T (Af )/K is a finite set, we can associate to ShK(T ) a cocharacter
µ : Gm → TC, and µ is defined over E ⊆ C for E the reflex field, the canonical model of ShK(T ) is described
by Shimura’s reciprocity map

(2.1) Recµ : Gal(Q/E) −→ Gal(E/E) ∼= E×\A×
E/E

×,0
R −→ Gm,E(Q)\Gm,E(Af ) −→ T (Q)\T (Af )

it is the E-scheme over Spec(E) such that the induced action of τ ∈ Gal(Q/E) on ShK(T )(C) is given by
Resµ(T ).

For general (G,X), a canonical model is an E-scheme such that for every morphism (T, {h}) → (G,X)
of Shimura data, the natural morphism

T (Q)\{h} × T (Af )/K ∩ T (Af ) → G(Q)\X ×G(Af )/K

is induced from ShK∩T (Af )(T, {h}) → ShK(G,X)×Spec(E) Spec E(T, {h}).

3. PEL datum

Definition 3.1. A rational PEL datum is a tuple (B, ∗, V, ⟨ , ⟩, h) where
• B is a finite dimensional semisimple Q-algebra.
• ∗ is a positive involution on B, i.e. trB/Q(xx

∗) > 0 for all nonzero x ∈ B.
• V is a finitely generated left B-module.
• ⟨ , ⟩ : V × V → Q(1) is an alternating form such that

⟨bv, ω⟩ = ⟨v, b∗ω⟩

for all v, w ∈ V and b ∈ B.
• h : C → EndBR(VR) is a homomorphism of R-algebras such that

⟨h(z)v, w⟩ = ⟨v, h(z)w⟩

for all z ∈ C and v, w ∈ V , and such that the symmetric form 1
2πi ⟨v, h(i)w⟩ is positive definite.

The homomorphism h defines a decomposition

V ⊗ C = V0 ⊕ V c
0

as C vector spaces where h(z) acts as z on V0 and z on V c
0 , this decomposition is stable under the action of

B and each factor is isotropic for ⟨ , ⟩.
Let (B, ∗) be a finite dimensional semisimple Q algebra with positive involution as above and let F be its

center. We let T denote the set of embeddings τ : F → C, via the fixed isomorphism i : Qp → C, we may

view it as the set of embeddings τ : F → Qp, we have a decomposition

F =
∏
[τ ]

F[τ ]

of F into a product of number fileds, where the product is over the Aut(C) orbits of T , we have a corre-
sponding decomposition

F =
∏
[τ ]

F[τ ]

of B where each B[τ ] is simple with center F[τ ]. The positivity of ∗ forces it to preserve this decomposition,
and hence (B, ∗) is a product of finite dimensional simple Q-algebras with positive involution.

We now recall that a simple Q-algebra with positive involution (B, ∗) falls into one of the three classes,
let F denote the center of B and F+ ⊂ F the subfield fixed by ∗.

• (type A) F/F+ is a totally imaginary quadratic extension of a totally real field F+.
• (type C) F = F+ is totally real and for every embedding τ : F → R, B ⊗F,τ R ∼= Mn(R) for some
integer n.

• (type D) F = F+ is totally real and for every embedding τ : F → R, B ⊗F,τ R ∼= Mn(H) for some
integer n, where H denotes the real quaternion algebra.
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Definition 3.2. The reflex field of the PEL datum (B, ∗, V, ⟨ , ⟩, h) is the subfield F0 of C over which the
B ⊗ C module V0 is defined, i.e. it is the subfield of C fixed by all those σ ∈ Aut(C) such that

V σ
0 := V0 ⊗C,σ C ∼= V0

as B ⊗ C modules. Equivalently, it is the subfield of C generated by all the traces tr(b|V0) for all b ∈ B,
where b is thought as an endomorphism of the C vector space V0.

Definition 3.3. An integral structure on a rational PEL datum (B, ∗, V, ⟨ , ⟩, h) is the additional choice of
O and L where

• O an order in B which is stable under ∗.
• L is a lattice in V which is stable by O and such that for all x, y ∈ L

⟨x, y⟩ ∈ Z(1)
an integral PEL datum is a tuple (O, ∗, L, ⟨ , ⟩, h) consisting of a rational PEL datum with an integral
structure.

What does this mean and why do we want a rational PEL datum?
Given any integral PEL datum, we can define a tuple

(A0, λ0, i0, (α0,n, ν0,n))

where A = L⊗ZR/L is an abelian variety, λ0 : A0 → A∨
0 is a polarization of the abelian variety A0, and A∨

0 is
the dual abelian variety of A0, i0 : OB → EndC(A0) is an endomorphism structure and α0,n : L/nL ∼= A0[n]
is a principal level n-structure. These structures on the abelian varieties A0 forms the so called PEL
structures, writing down an integral PEL strucutre is the same as writing down a tuple.

The moduli problem associated to an integral PEL datum is naturally defined over the reflex field F0, then
if p is a good prime, one can even work over OF0,(p), for studying rationality properties of automorphic forms,
it is important to work over a number field like F0 or a more integral variant. However, for the purposes of
studying congruences, as we seen in the Katz’s p-adic modular forms example, it is more convient to work
over a p-adic base.
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