SCHWARTZ SPACE OF BASIC AFFINE SPACE

RUI CHEN

1. INTRODUCTION

In this note, we want to categorify the result of Braverman and Kazhdan on spherical and Iwahori Hecke modules associated with basic affine spaces [BK18].

2. The basic affine space

Let's set up the notation. Let F be a local non-archimedean field with ring of integers \mathcal{O} , we fix a generator κ of \mathcal{O} . Let G be a split connected reductive group over F and B its Borel subgroup with U its unipotent radical, T = B/U its Cartan torus.

Let Λ be the lattices of cocharacters of T and let Λ^{\vee} be the lattice of characters of T. We fix a Haar measure dg on G and denote by $\mathcal{H}(G)$ the Hecke algebra of locally constant compactly supported functions on G. As well-known, the category $\mathcal{M}(G)$ of smooth G-modules is equivalent to the category of non-degenerate $\mathcal{H}(G)$ -modules.

Let P be a parabolic subgroup of G with a Levi subgroup M and unipotent radical U_P , let $X_P = G/U_P$, this space has a natural $G \times M$ -action, therefore the space $S_c(X_P)$ of locally constant supported functions on X_P becomes $G \times M$ module. We are going to twist the M-action by the square root of the absolute value of the determinant of the M-action on the Lie algebra \mathfrak{u}_P of U_P . It is easy to see that X_P possesses unique G-invariant measure, hence we can talk about $L^2(X_P)$ and it has a natural unitary action of $G \times M$.

We have defined certain algebra $\mathcal{J}(G)$ of functions on G which contains the Hecke algebra $\mathcal{H}(G)$ and can be thought as an algebraic version of the Harish-Chandra Schwartz space $\mathcal{C}(G)$, in particular $\mathcal{J}(G)$ is a smooth $G \times G$ -module. There is a $\mathcal{J}(G)$ -action on $L^2(X_P)$ for any P so we can set

$$\mathcal{S}(X_P) = \mathcal{J}(G) \cdot \mathcal{S}_c(X_P)$$

here $S_c(X_P)$ stands for the space of locally constant functions with compact support on X_P . The space $S(X_P)$ is a smooth $G \times M$ module.

Note we have the following theorem which generalizes the classical Fourier transform on the space $SL_2/U_{SL_2} \cong \mathbb{A}^2$

Theorem 2.1. Let P and Q be two associate parabolics, i.e. two parabolics with the same Levi subgroup M, then there exists a $G \times M$ -equivariant unitary isomorphism $\Phi_{P,Q} : L^2(X_P) \cong L^2(X_Q)$, these isomorphism satisfy the following properties

•
$$\Phi_{P,P} = id.$$

• For three parabolic subgroups P, Q, R with the same Levi subgroup M we have $\Phi_{Q,R} \circ \Phi_{P,Q} = \Phi_{P,R}$.

Note the operator $\Phi_{P,Q}$ is not canonical.

For a parabolic subgroup P of G with Chosen Levi subgroup M let Ass(P) be the set of all parabolics Q containing M as a Levi subgroup, we now define another version of the space $S'(X_P)$ of the Schwartz space of functions on X_P

$$\mathcal{S}'(X_P) = \sum_{Q \in Ass(P)} \Phi_{Q,P}(\mathcal{S}_c(X_Q))$$

The expected relationship between the two versions of the Schwartz space is described in the following conjecture

Conjecture 2.2. We have

Date: May 2025.

- $\mathcal{S}'(X_P) \subset \mathcal{S}(X_P).$
- $S'(X_P)_{cusp} = S(X_P)_{cusp}$, here by $S(X_P)_{cusp}$ we denote the *M*-cuspidal part of $S(X)_{cusp}$, similarly for $S'(X_P)$.
- The operator $\Phi_{P,Q}$ defines an isomrophism between $\mathcal{S}(X_P)$ and $\mathcal{S}(X_Q)$.
- The right action of $\mathcal{J}(M)$ on $L^2(X_P)$ preserves $\mathcal{S}(X_P)$, thus making $\mathcal{S}(X_P)$ into a $(\mathcal{J}(G), \mathcal{J}(M))$ bimodule.

Example 2.3. Let's look at two extreme cases. First we consider the case P = G, then in this case Ass(P) consists of 1 element and therefore $\mathcal{S}'(X_P) = \mathcal{H}(G)$, similarly $\mathcal{S}(X_P) = \mathcal{J}(G)$, we have $\mathcal{S}'(X_P) \subset \mathcal{S}(X_P)$.

Second, let's consider the extreme case when P is a Borel subgroup B of G. Then M is a maximal split torus of G and we have $\mathcal{H}(T) = \mathcal{J}(T)$, since any representation of T is cuspidal, so we have

$$\mathcal{S}(X_B) = \mathcal{S}(X_B)_{cusp}, \ \mathcal{S}'(X_B) = \mathcal{S}'(X_B)_{cusp}$$

now the second assertion in conjecture 2.2 states that $\mathcal{S}'(X_B) = \mathcal{S}(X_B)$. Braverman and Kazhdan proved this conjecture for Iwahori part of both spaces.

3. The spherical part

Let's define the spherical part of $\mathcal{S}(X_P)$ by setting

$$\mathcal{S}_{sph}(X_P) = \mathcal{S}(X_P)^{G(\mathcal{O}) \times M(\mathcal{O})}$$

we would like to describe this space more explicitly, for this note set-theoretically we have

$$G(\mathcal{O}) \setminus X_P / M(\mathcal{O}) = M(\mathcal{O}) \setminus M / M(\mathcal{O})$$

hence elements of $S_{sph}(X_P)$ can be thoguht as $M(\mathcal{O}) \times M(\mathcal{O})$ invariant functions on M. Recall the Satake isomorphism for M says that the spherical Hecke algebra $\mathcal{H}_{sph}(M)$ consisting of compactly supported $M(\mathcal{O}) \times M(\mathcal{O})$ -invariant functions on M is isomorphic to the complexified Grothendieck ring of the category of finite dimensional representations of the Langlands dual group M^{\vee} . We shall denote the corresponding map by $K_0(\operatorname{Rep}(M^{\vee})) \to \mathcal{H}_{sph}(M)$ by Sat(M).

Let G^{\vee} be the Langlands dual group of G and let P^{\vee} be the corresponding parabolic subgroup of G^{\vee} with unipotent radical $U_{P^{\vee}}$. Let $\mathfrak{u}_{\mathfrak{p}^{\vee}}$ denote the Lie algebra of $U_{P^{\vee}}$, it has a natural action of M^{\vee} .

Now let

$$f_P = \sum_{i=0}^{\infty} \operatorname{Sat}_M([\operatorname{Sym}^i(\mathfrak{u}_{\mathfrak{p}^{\vee}})])$$

using the Satake isomorphism we can regard f_P as a $G(\mathcal{O}) \times M(\mathcal{O})$ invariant function on X_P .

Conjecture 3.1. $S_{sph}(X)$ is a free right $\mathcal{H}_{sph}(M)$ -module generated by f_P .

Let's introduce the local unramified conjecture from relative Langlands duality, we are in the setting $M = T^*X$ polarized and the dual \check{M} is endowed with the neutral \mathbb{G}_{gr} -action, we ignore the shearing in the formulation.

Conjecture 3.2. There is an equivalence of categories

• (small version)

 \mathbb{L}_X : $Shv(X_F/G_{\mathcal{O}}) \longrightarrow perfect \check{G} - equivariant modules for <math>\mathcal{O}_{\check{M}}$

• (large version)

$$\mathbb{L}_X : SHV(X_F/G_{\mathcal{O}}) \longrightarrow QC(\check{M}/\check{G})$$

the equivalence is required to be compatible with pointings, Hecke actions, Galois actions and Poisson structures.

Example 3.3. For $M = T^*(G/U) = T^*X$ as a $G \times T$ space with $B \subset G$ the Borel subgroup and B = TU the Levi decomposition, we have $\check{M} = T^*(\check{G}/\check{U}) = T^*\check{X}$ as a $\check{G} \times \check{T}$ -space. Using the sheaf-function dictionary, we can see that the local unramified BZSV conjecture 3.2 is a categorification of 3.1.

4. Iwahori part and K-theory

Let $\mathcal{H}_{aff}(G)$ denote the affine Hecke algebra of G, this is an algebra over $\mathbb{C}[v, v^{-1}]$, its specilization at $v = q^{1/2}$ is isomorphic to the Iwahori-Hecke algebra $\mathcal{H}(G, I)$ of G.

Let $\mathcal{N}_{G^{\vee}}$ be the nilpotent cone in the Lie algebra of \overline{G}^{\vee} , let $\mathcal{B}_{G^{\vee}}$, $\mathcal{B}_{M^{\vee}}$ denote the corresponding flag varieties. The cotangent bundle $T^*\mathcal{B}_{G^{\vee}}$ maps naturally to $\mathcal{N}_{G^{\vee}}$ thus we can define

$$St_{G^{\vee},M^{\vee}} = T^*\mathcal{B}_{G^{\vee}} \times_{\mathcal{N}_{G^{\vee}}} T^*\mathcal{B}_{M^{\vee}}$$

This variety is acted on by the group $G^{\vee} \times \mathbb{C}^{\times}$, thus we can consider the complexified equivariant K-theory $K_{M^{\vee} \times \mathbb{C}^{\times}}(St_{G^{\vee}, M^{\vee}})$, this is a vector space over $\mathbb{C}[v, v^{-1}] = K_{\mathbb{C}^{\times}}(pt)$, it is easy to see that it has a module structure of $\mathcal{H}_{aff}(G) \otimes \mathcal{H}_{aff}(M)$

Conjecture 4.1. The specialization of $K_{M^{\vee}\times\mathbb{C}^{\times}}(St_{G^{\vee},M^{\vee}})$ at $v = q^{1/2}$ is isomorphic to $\mathcal{S}'(X_P)^I$.

Question: For P = B, can we formulate a categorical version of this conjecture?

References

[BK18] Alexander Braverman and David Kazhdan. Schwartz space of parabolic basic affine space and asymptotic hecke algebras. arXiv preprint arXiv:1804.00336, 2018.