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1. Introduction

In this note, we want to categorify the result of Braverman and Kazhdan on spherical and Iwahori Hecke
modules associated with basic affine spaces [BK18].

2. The basic affine space

Let’s set up the notation. Let F be a local non-archimedean field with ring of integers O, we fix a generator
κ of O. Let G be a split connected reductive group over F and B its Borel subgroup with U its unipotent
radical, T = B/U its Cartan torus.

Let Λ be the lattices of cocharacters of T and let Λ∨ be the lattice of characters of T . We fix a Haar
measure dg on G and denote byH(G) the Hecke algebra of locally constant compactly supported functions on
G. As well-known, the category M(G) of smooth G-modules is equivalent to the category of non-degenerate
H(G)-modules.

Let P be a parabolic subgroup of G with a Levi subgroup M and unipotent radical UP , let XP = G/UP ,
this space has a natural G ×M -action, therefore the space Sc(XP ) of locally constant supported functions
on XP becomes G×M module. We are going to twist the M -action by the square root of the absolute value
of the determinant of the M -action on the Lie algebra uP of UP . It is easy to see that XP possesses unique
G-invariant measure, hence we can talk about L2(XP ) and it has a natural unitary action of G×M .

We have defined certain algebra J (G) of functions on G which contains the Hecke algebra H(G) and
can be thought as an algebraic version of the Harish-Chandra Schwartz space C(G), in particular J (G) is a
smooth G×G-module. There is a J (G)-action on L2(XP ) for any P so we can set

S(XP ) = J (G) · Sc(XP )

here Sc(XP ) stands for the space of locally constant functions with compact support on XP . The space
S(XP ) is a smooth G×M module.

Note we have the following theorem which generalizes the classical Fourier transform on the space
SL2/USL2

∼= A2

Theorem 2.1. Let P and Q be two associate parabolics, i.e. two parabolics with the same Levi subgroup M ,
then there exists a G × M -equivariant unitary isomorphism ΦP,Q : L2(XP ) ∼= L2(XQ), these isomorphism
satisfy the following properties

• ΦP,P = id.
• For three parabolic subgroups P,Q,R with the same Levi subgroup M we have ΦQ,R ◦ ΦP,Q = ΦP,R.

Note the operator ΦP,Q is not canonical.
For a parabolic subgroup P of G with Chosen Levi subgroup M let Ass(P ) be the set of all parabolics Q

containing M as a Levi subgroup, we now define another version of the space S ′(XP ) of the Schwartz space
of functions on XP

S ′(XP ) =
∑

Q∈Ass(P )

ΦQ,P (Sc(XQ))

The expected relationship between the two versions of the Schwartz space is described in the following
conjecture

Conjecture 2.2. We have
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• S ′(XP ) ⊂ S(XP ).
• S ′(XP )cusp = S(XP )cusp, here by S(XP )cusp we denote the M -cuspidal part of S(X)cusp, similarly

for S ′(XP ).
• The operator ΦP,Q defines an isomrophism between S(XP ) and S(XQ).
• The right action of J (M) on L2(XP ) preserves S(XP ), thus making S(XP ) into a (J (G),J (M))-

bimodule.

Example 2.3. Let’s look at two extreme cases. First we consider the case P = G, then in this case Ass(P )
consists of 1 element and therefore S ′(XP ) = H(G), similarly S(XP ) = J (G), we have S ′(XP ) ⊂ S(XP ).

Second, let’s consider the extreme case when P is a Borel subgroup B of G. Then M is a maximal split
torus of G and we have H(T ) = J (T ), since any representation of T is cuspidal, so we have

S(XB) = S(XB)cusp, S ′(XB) = S ′(XB)cusp

now the second assertion in conjecture 2.2 states that S ′(XB) = S(XB). Braverman and Kazhdan proved
this conjecture for Iwahori part of both spaces.

3. The spherical part

Let’s define the spherical part of S(XP ) by setting

Ssph(XP ) = S(XP )
G(O)×M(O)

we would like to describe this space more explicitly, for this note set-theoretically we have

G(O)\XP /M(O) = M(O)\M/M(O)

hence elements of Ssph(XP ) can be thoguht as M(O)×M(O) invariant functions on M . Recall the Satake
isomorphism forM says that the spherical Hecke algebraHsph(M) consisting of compactly supportedM(O)×
M(O)-invariant functions on M is isomorphic to the complexified Grothendieck ring of the category of finite
dimensional representations of the Langlands dual group M∨. We shall denote the corresponding map by
K0(Rep(M

∨)) → Hsph(M) by Sat(M).
Let G∨ be the Langlands dual group of G and let P∨ be the corresponding parabolic subgroup of G∨

with unipotent radical UP∨ . Let up∨ denote the Lie algebra of UP∨ , it has a natural action of M∨.
Now let

fP =

∞∑
i=0

SatM ([Symi(up∨)])

using the Satake isomorphism we can regard fP as a G(O)×M(O) invariant function on XP .

Conjecture 3.1. Ssph(X) is a free right Hsph(M)-module generated by fP .

Let’s introduce the local unramified conjecture from relative Langlands duality, we are in the setting
M = T ∗X polarized and the dual M̌ is endowed with the neutral Ggr-action, we ignore the shearing in the
formulation.

Conjecture 3.2. There is an equivalence of categories

• (small version)

LX : Shv(XF /GO) −→ perfect Ǧ− equivariant modules for OM̌

• (large version)

LX : SHV(XF /GO) −→ QC(M̌/Ǧ)

the equivalence is required to be compatible with pointings, Hecke actions, Galois actions and Poisson
structures.

Example 3.3. For M = T ∗(G/U) = T ∗X as a G×T space with B ⊂ G the Borel subgroup and B = TU the
Levi decomposition, we have M̌ = T ∗(Ǧ/Ǔ) = T ∗X̌ as a Ǧ× Ť -space. Using the sheaf-function dictionary,
we can see that the local unramified BZSV conjecture 3.2 is a categorification of 3.1.
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4. Iwahori part and K-theory

Let Haff (G) denote the affine Hecke algebra of G, this is an algebra over C[v, v−1], its specilization at

v = q1/2 is isomorphic to the Iwahori-Hecke algebra H(G, I) of G.
Let NG∨ be the nilpotent cone in the Lie algebra of G∨, let BG∨ , BM∨ denote the corresponding flag

varieties. The cotangent bundle T ∗BG∨ maps naturally to NG∨ thus we can define

StG∨,M∨ = T ∗BG∨ ×NG∨ T ∗BM∨

This variety is acted on by the group G∨ ×C×, thus we can consider the complexified equivariant K-theory
KM∨×C×(StG∨,M∨), this is a vector space over C[v, v−1] = KC×(pt), it is easy to see that it has a module
structure of Haff (G)⊗Haff (M)

Conjecture 4.1. The specialization of KM∨×C×(StG∨,M∨) at v = q1/2 is isomorphic to S ′(XP )
I .

Question: For P = B, can we formulate a categorical version of this conjecture?
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