SATAKE ISOMORPHISM

RUI CHEN

1. INTRODUCTION

This is a note summarize the Satake isomorphism following Shahidi's book [Sha10].

2. SATAKE ISOMORPHISM

Throughout this section k will be a p-adic local field and G is a connected reductive group over k. Let T be a maximal torus of G defined over k. We will assume that G is quasisplit. We will take T a maximal torus of G and A a maximal split torus of T which is also a maximal split torus of G, we will let $W_0 = W(G, A)$.

We will denote the character modules of T and A by $X^*(T)$ and $X^*(A)$. Let $X^*(T)_k = X^*(T)^{\Gamma_k}$ be the subgroup of k-rational characters of T, those defined over k. Observe that $X^*(A) = X^*(A)^{\Gamma_k}$ as A is split.

Next let $X_*(T) = \text{Hom}(X^*(T), \mathbb{Z})$ and $X_*(T)_k = \text{Hom}(X^*(T)_k, \mathbb{Z})$. We have the standard homomorphism

$$H_T: T(k) \longrightarrow X_*(T)_k$$
$$q^{\langle H_T(t), \chi \rangle} = |\chi(t)|_k$$

There is a pairing \langle , \rangle between $X^*(T)$ and $X_*(T)$ which allows us to view $X_*(T)$ as the group of cocharacters of T. The embedding $\theta : A \subset T$ leads to an injection

$$0 \longrightarrow X_*(A) \longrightarrow X_*(T)$$

hence we have a map

$$0 \longrightarrow X_*(A) \longrightarrow X_*(T) \longrightarrow X_*(T)_k$$

We claim the following

- $X_*(A) = X_*(T)^{\Gamma_k}$
- the injection θ_* from $X_*(A)$ into $X_*(T)$ injects $X_*(A)$ into $X_*(T)_k = \text{Hom}(X^*(T)_k, \mathbb{Z})$.

Example 2.1. Let's consider the torus $T = \operatorname{Res}_{K/k}GL_1$ for ℓ/k a quadratic extension. Then T maybe identified with $T = K^* \times K^*$ on which σ acts as

$$(t_1, t_2)^{\sigma} = (t_2^{\sigma}, t_1^{\sigma})$$

its k-points can be defined as the Γ -fixed points, which is isomorphic to K^* . An arbitrary element χ of X(T) is of the form

$$\chi(t_1, t_2) = t_1^{n_1} t_2^{n_2}$$

we define

$$X_0 = \{ \chi \in X \mid \sum_{\sigma \in \Gamma} \chi^{\sigma} \}$$

then we can show that $A = X_0^{\perp}$ is a maximal split torus of T. In our example, we can claculate that the maximal split torus A of T equals

$$A = X_0^{\perp} = \{ (t, t) \mid t \in K^* \}$$

and its k-points $A(k) \cong k^*$.

We can also define a maximal anisotropic torus T_0 of T as

$$T_0 = (X^{\Gamma})^{\perp}$$

it can be checked that in our example, every $\chi \in X^{\Gamma}$ is of the form $\chi(t_1, t_2) = (t_1 t_2)^n$, hence

$$T_0 = \{ (t, t^{-1}) \mid t \in K^* \}$$

Date: September 2024.

and $T_0(k) = K^1$.

Let's denote A^0 and T^0 the kernel of H_A and H_T , i.e. the largest compact subgroup of A(k) and T(k). We then have the following exact sequences

In general, we therefore have

$$X_*(A) \subset H_T(T(k)) \subset X_*(T)_k$$

Proposition 2.2. For a unramified torus T, we have

$$H_T(T(k)) = X_*(A)$$

Definition 2.3. A character $\chi : T(k) \longrightarrow \mathbb{C}^*$ is unramified if $\chi \mid T^0 = 1$, i.e. χ factors through Λ . We use $X_{un}(T(k)) = X_{un}$ to denote the set of unramified characters of T(k).

Note that we have

$$X_{un}(T(k)) = \operatorname{Hom}(\Lambda, \mathbb{C}^*) = \hat{A}$$

Definition 2.4. A connected reductive group G over k is unramified if G is quasisplit and split over an unramified cyclic extension of k.

Definition 2.5. Let π be an irreducible admissible representation of G(k) on a complex vector space \mathcal{H} , where G is unramified, then π is called unramified if \mathcal{H} has a vector fixed by $G(\mathcal{O})$.

The Satake transform is the linear map

$$S: \mathcal{H}(G(k), K) \longrightarrow \mathcal{H}(T(k), T^0)$$
$$Sf(t) = \delta(t)^{1/2} \int_U f(tu) \ du$$

Theorem 2.6. The Satake transform S is an algebra isomorphism of $\mathcal{H}(G(k), K)$ onto $\mathbb{C}[\Lambda]^{W_0}$.

3. Connection with L-groups and local unramified L-functions

Let G be an unramified group over k splits over the unramified extension k'/k. Let T^{\vee} and G^{\vee} be the connected components of T and G. Let σ be the Frobenius element and thus $\Gamma_{k'/k} = \langle \sigma \rangle$, let N^{\vee} be the normalizer of T^{\vee} in G^{\vee} and $W^{\vee} = N^{\vee}/T^{\vee}$, let W = W(G,T), we may identify W with W^{\vee} , we also denote $W_0 = W(G, A)$, it is the subgroup of W consisting of elements which send A to itself, let N^{\vee} be the corresponding subgroup of W^{\vee} .

Proposition 3.1. Let $\nu^{\vee} : T^{\vee} \to A^{\vee}$ be the canonical surjection, and $\nu' : T^{\vee} \rtimes \sigma \to A^{\vee}$ be defined by $\nu' : \nu'(t \times \sigma) = \nu(t)$, then ν' induces a bijection

$$\overline{\nu}: T^{\vee} \rtimes \sigma/Int \ N^{\vee} \cong A^{\vee}/W_0$$

let $(G^{\vee} \rtimes \sigma)_{ss}$ be the conjugacy classes of semisimple elements in $G^{\vee} \rtimes \sigma$, then the map

$$\overline{\mu}: \ T^{\vee} \rtimes \sigma/Int \ N^{\vee} \longrightarrow (G^{\vee} \rtimes \sigma)_{ss}/Int \ G^{\vee}$$

induces by the inclusion is a bijection, and hence

$$\alpha = \overline{\mu} \cdot \overline{\nu}^{-1} : \ A^{\vee} / W_0 \longrightarrow (G^{\vee} \rtimes \sigma)_{ss} / Int \ G^{\vee}$$

is a bijection.

Let π be an irreducible unramified representation of G(k) on $\mathcal{H}(\pi)$, then dim $\mathcal{H}(\pi)^{K} = 1$ which is an module for $\mathcal{H}_K = \mathcal{H}(G(k), G(\mathcal{O}_k))$, for $K = G(\mathcal{O}_k)$, hence there exists an algebra homomorphism ω from \mathcal{H}_K to \mathbb{C} such that

$$\pi(f)v = \omega(f)v$$

for $v \in \mathcal{H}(\pi)^K$.

This homomorphism ω is of the form

$$\omega_{\chi}(f) = \int_{T(k)} Sf(t)\chi(t) \ dt$$

for χ an unramified character of T(k), unique up to conjugation by elements of W_0 , class π is uniquely determined by the orbit $\chi \in A^{\vee}/W_0$.

Given an irreducible unramified representation π , let $A(\pi) \in A^{\vee}/W_0$ be the W_0 -orbit of A^{\vee} determining the class of π , we will set

$$c(\pi) := \overline{\mu} \cdot \overline{\nu}^{-1}(A(\pi))$$

Definition 3.2. The local Langlands L-function attached to π and r is

$$L(s, \pi, r) = \det(I - r(c(\pi))q^{-s})^{-1}$$

With definition, we can calculate some examples of local L-functions.

Example 3.3. Let $G = SL_2$, for r the adjoint representation of $G^{\vee}(\mathbb{C}) = PGL_2(\mathbb{C})$, we have

$$L(0,\pi,r) = \frac{1}{(1-q^{-2s})(1-q^{2s})} = (1-\mu(a_{\alpha}))^{-1}(1-\mu(a_{\alpha})^{-1})^{-1}$$

here $\mu(a_{\alpha}) = |\omega|^{-s} = q^{-2s}$ with $\mu(\text{diag}(a, a^{-1})) = |a|^{2s}, a_{\alpha} = \text{diag}(\varpi, \varpi^{-1}).$

Example 3.4. For $G = SU_3$, assume it is defined by E/k, with [E:k] = 2, and let $\Gamma_{E/k} = \text{Gal}(E/k)$, the maximal torus T has its k-points as

$$T(k) = \{ \operatorname{diag}(a, \overline{a}/a, \overline{a}^{-1}) \mid a \in E^* \}$$

for $\mu(a) = |a|_k^{2s}$, the elements A_{μ} can be represented by

(

$$A_{\mu} = \operatorname{diag}(q_k^s, 1, q_k^{-s})$$

dnote ^L \mathfrak{n} the Lie algebra of ^LN, it has basis $X_{\alpha^{\vee}}$ and $X_{\beta^{\vee}}$, $X_{\alpha^{\vee}+\beta^{\vee}}$ with Galois action. Then we have

$$\sigma(X_{\alpha^{\vee}}) = X_{\beta^{\vee}}, \ \sigma(X_{\beta^{\vee}}) = X_{\alpha^{\vee}}, \ \sigma(X_{\alpha^{\vee}+\beta^{\vee}}) = -X_{\alpha^{\vee}+\beta^{\vee}}$$

we can calculate that for the adjoint representation \tilde{r} on $L_{\mathfrak{n}}$, we get

$$L(0,\pi,\tilde{r}) = \det(I - \tilde{r}(A_{\mu} \times \sigma))^{-1} = \det(\begin{pmatrix} 1 & -q^{-s} & 0\\ -q_{k}^{-s} & 1 & 0\\ 0 & 0 & 1 + q_{k}^{-2s} \end{pmatrix})^{-1} = (1 - \mu(a_{\alpha})^{2})^{-1}$$

here $a_{\alpha} = \operatorname{diag}(\varpi, 1, \varpi^{-1}).$

4. Connection with intertwining operators

Proposition 4.1. Assume $G = SL_2$, choose $f_0 \in I(\mu)$, where μ is an unramified character of k^* such that $f_0(gk) = f_0(g) \text{ for } k \in SL_2(\mathcal{O}_k), f_0(e) = 1 \text{ then}$

$$\int_{N^{-}(k)} f_{0}(n) \ dn = (1 - q^{-1}\mu(a_{\alpha}))/(1 - \mu(a_{\alpha})) = L(0, \mu, \tilde{r})/L(1, \mu, \tilde{r})$$

here $L(0, \pi, \tilde{r})$ is calculated in 3.3.

Proposition 4.2. Assume $G = SU_3$, choose $f_0 \in I(\mu)$, where μ is an unramified character of T(k) such that $f_0(gk) = f_0(g)$ for $k \in SU_3(\mathcal{O}_k)$, $f_0(e) = 1$ then

$$\int_{N^{-}(k)} f_{0}(n) \ dn = L(0,\mu,\tilde{r})/L(1,\mu,\tilde{r})$$

here $L(0, \pi, \tilde{r})$ is calculated in 3.4.

Let's also include the archimedean case

Proposition 4.3. Let $G = SL_2$ and take $K = SO_2(\mathbb{R})$, let $\mu(diag(a, a^{-1})) = |a|^s$, denote f the K-invariant function of $V(\mu)$, normalized by $f(\mu) = 1$, then

$$\int_{\mathbb{R}} f(\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}) = L(s)/L(s+1)$$

for $L(s) = \pi^{-s/2} \Gamma(s/2)$.

References

[Sha10] Freydoon Shahidi. Eisenstein series and automorphic L-functions, volume 58. American Mathematical Soc., 2010.