
SATAKE ISOMORPHISM

RUI CHEN

1. Introduction

This is a note summarize the Satake isomorphism following Shahidi’s book [Sha10].

2. Satake isomorphism

Throughout this section k will be a p-adic local field and G is a connected reductive group over k. Let T
be a maximal torus of G defined over k. We will assume that G is quasisplit. We will take T a maximal torus
of G and A a maximal split torus of T which is also a maximal split torus of G, we will let W0 = W (G,A).

We will denote the character modules of T and A by X∗(T ) and X∗(A). Let X∗(T )k = X∗(T )Γk be the
subgroup of k-rational characters of T , those defined over k. Observe that X∗(A) = X∗(A)Γk as A is split.

Next let X∗(T ) = Hom(X∗(T ),Z) and X∗(T )k = Hom(X∗(T )k,Z). We have the standard homomorphism

HT : T (k) −→ X∗(T )k

q⟨HT (t), χ⟩ = |χ(t)|k
There is a pairing ⟨, ⟩ between X∗(T ) and X∗(T ) which allows us to view X∗(T ) as the group of cochar-

acters of T . The embedding θ : A ⊂ T leads to an injection

0 −→ X∗(A) −→ X∗(T )

hence we have a map
0 −→ X∗(A) −→ X∗(T ) −→ X∗(T )k

We claim the following

• X∗(A) = X∗(T )
Γk

• the injection θ∗ from X∗(A) into X∗(T ) injects X∗(A) into X∗(T )k = Hom(X∗(T )k,Z).

Example 2.1. Let’s consider the torus T = ResK/kGL1 for ℓ/k a quadratic extension. Then T maybe
identified with T = K∗ ×K∗ on which σ acts as

(t1, t2)
σ = (tσ2 , t

σ
1 )

its k-points can be defined as the Γ-fixed points, which is isomorphic to K∗. An arbitrary element χ of X(T )
is of the form

χ(t1, t2) = tn1
1 tn2

2

we define
X0 = { χ ∈ X |

∑
σ∈Γ

χσ}

then we can show that A = X⊥
0 is a maximal split torus of T . In our example, we can claculate that the

maximal split torus A of T equals
A = X⊥

0 = { (t, t) | t ∈ K∗ }
and its k-points A(k) ∼= k∗.

We can also define a maximal anisotropic torus T0 of T as

T0 = (XΓ)⊥

it can be checked that in our example, every χ ∈ XΓ is of the form χ(t1, t2) = (t1t2)
n, hence

T0 = { (t, t−1) | t ∈ K∗}
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and T0(k) = K1.

Let’s denote A0 and T 0 the kernel of HA and HT , i.e. the largest compact subgroup of A(k) and T (k).
We then have the following exact sequences

0 // A0 //

��

A
HA //

θ

��

X∗(A)
id //

θ

��

X∗(A) //

θ∗

��

0

0 // T 0 // T
HT// HT (T (k)) // X∗(T )k

In general, we therefore have

X∗(A) ⊂ HT (T (k)) ⊂ X∗(T )k

Proposition 2.2. For a unramified torus T , we have

HT (T (k)) = X∗(A)

Definition 2.3. A character χ : T (k) −→ C∗ is unramified if χ | T 0 = 1, i.e. χ factors through Λ. We use
Xun(T (k)) = Xun to denote the set of unramified characters of T (k).

Note that we have

Xun(T (k)) = Hom(Λ,C∗) = Â

Definition 2.4. A connected reductive group G over k is unramified if G is quasisplit and split over an
unramified cyclic extension of k.

Definition 2.5. Let π be an irreducible admissible representation of G(k) on a complex vector space H,
where G is unramified, then π is called unramified if H has a vector fixed by G(O).

The Satake transform is the linear map

S : H(G(k),K) −→ H(T (k), T 0)

Sf(t) = δ(t)1/2
∫
U

f(tu) du

Theorem 2.6. The Satake transform S is an algebra isomorphism of H(G(k),K) onto C[Λ]W0 .

3. Connection with L-groups and local unramified L-functions

Let G be an unramified group over k splits over the unramified extension k′/k. Let T∨ and G∨ be the
connected components of T and G. Let σ be the Frobenius element and thus Γk′/k = ⟨ σ ⟩, let N∨ be
the normalizer of T∨ in G∨ and W∨ = N∨/T∨, let W = W (G,T ), we may identify W with W∨, we also
denote W0 = W (G,A), it is the subgroup of W consisting of elements which send A to itself, let N∨ be the
corresponding subgroup of W∨.

Proposition 3.1. Let ν∨ : T∨ → A∨ be the canonical surjection, and ν′ : T∨ ⋊ σ → A∨ be defined by
ν′ : ν′(t× σ) = ν(t), then ν′ induces a bijection

ν : T∨ ⋊ σ/Int N∨ ∼= A∨/W0

let (G∨ ⋊ σ)ss be the conjugacy classes of semisimple elements in G∨ ⋊ σ, then the map

µ : T∨ ⋊ σ/Int N∨ −→ (G∨ ⋊ σ)ss/Int G
∨

induces by the inclusion is a bijection, and hence

α = µ · ν−1 : A∨/W0 −→ (G∨ ⋊ σ)ss/Int G
∨

is a bijection.
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Let π be an irreducible unramified representation of G(k) on H(π), then dim H(π)K = 1 which is an
module for HK = H(G(k), G(Ok)), for K = G(Ok), hence there exists an algebra homomorphism ω from
HK to C such that

π(f)v = ω(f)v

for v ∈ H(π)K .
This homomorphism ω is of the form

ωχ(f) =

∫
T (k)

Sf(t)χ(t) dt

for χ an unramified character of T (k), unique up to conjugation by elements of W0, class π is uniquely
determined by the orbit χ ∈ A∨/W0.

Given an irreducible unramified representation π, let A(π) ∈ A∨/W0 be the W0-orbit of A
∨ determining

the class of π, we will set

c(π) := µ · ν−1(A(π))

Definition 3.2. The local Langlands L-function attached to π and r is

L(s, π, r) = det(I − r(c(π))q−s)−1

With definition, we can calculate some examples of local L-functions.

Example 3.3. Let G = SL2, for r the adjoint representation of G∨(C) = PGL2(C), we have

L(0, π, r) =
1

(1− q−2s)(1− q2s)
= (1− µ(aα))

−1(1− µ(aα)
−1)−1

here µ(aα) = |ω|−s = q−2s with µ(diag(a, a−1)) = |a|2s, aα = diag(ϖ,ϖ−1).

Example 3.4. For G = SU3, assume it is defined by E/k, with [E : k] = 2, and let ΓE/k = Gal(E/k), the
maximal torus T has its k-points as

T (k) = {diag(a, a/a, a−1) | a ∈ E∗}
for µ(a) = |a|2sk , the elements Aµ can be represented by

Aµ = diag(qsk, 1, q
−s
k )

dnote Ln the Lie algebra of LN , it has basis Xα∨ and Xβ∨ , Xα∨+β∨ with Galois action. Then we have

σ(Xα∨) = Xβ∨ , σ(Xβ∨) = Xα∨ , σ(Xα∨+β∨) = −Xα∨+β∨

we can calculate that for the adjoint representation r̃ on Ln, we get

L(0, π, r̃) = det(I − r̃(Aµ × σ))−1 = det(

 1 −q−s 0
−q−s

k 1 0
0 0 1 + q−2s

k

)−1 = (1− µ(aα)
2)−1

here aα = diag(ϖ, 1, ϖ−1).

4. Connection with intertwining operators

Proposition 4.1. Assume G = SL2, choose f0 ∈ I(µ), where µ is an unramified character of k∗ such that
f0(gk) = f0(g) for k ∈ SL2(Ok), f0(e) = 1 then∫

N−(k)

f0(n) dn = (1− q−1µ(aα))/(1− µ(aα)) = L(0, µ, r̃)/L(1, µ, r̃)

here L(0, π, r̃) is calculated in 3.3.

Proposition 4.2. Assume G = SU3, choose f0 ∈ I(µ), where µ is an unramified character of T (k) such
that f0(gk) = f0(g) for k ∈ SU3(Ok), f0(e) = 1 then∫

N−(k)

f0(n) dn = L(0, µ, r̃)/L(1, µ, r̃)
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here L(0, π, r̃) is calculated in 3.4.
Let’s also include the archimedean case

Proposition 4.3. Let G = SL2 and take K = SO2(R), let µ(diag(a, a−1)) = |a|s, denote f the K-invariant
function of V (µ), normalized by f(µ) = 1, then∫

R
f(

(
1 0
x 1

)
) = L(s)/L(s+ 1)

for L(s) = π−s/2Γ(s/2).
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