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1. Introduction

This is my personal study note for root systems from the chapter 2 of Knapp’s book [1].
The structure is as follows: Given a complex semisimple algebra g, the choice of a Cartan algebra gives us

an abstract root system Φ, the choice of a set of positive roots of an abstract root system gives us an abstract
Cartan matrix A, using the Weyl group W = W (Φ) of an abstract root system, we can show that the Cartan
matrix determines the root system 3.3, we can associate Dynkin diagram to Cartan matrix and we can obtain
a classification of connected abstract Dynkin diagram from the properties of abstract Cartan matrix 4.1,
finally, based on the Serre relation 4.4, we can establish the isomorphism theorem 4.5 and existence theorem
4.6. Above all, passing from the complex Lie algebra to its root system and the Cartan matrix, then to
the Dynkin diagram, although we have to make a choice at each step, we don’t loose information, and a
classification of simple complex Lie algebras can be obtained from the classification of connected Dynkin
diagrams.

Let k be a characteristic zero field, let’s note that we can also associate root systems to symmetric varieties
over k [2], and to spherical varieties over k [3].

2. Abstract root systems

The abstract root system is a way to axiomize the property of the complex semisimple Lie algebras.

Definition 2.1. An abstract root system Φ is a finite-dimensional real inner product space V with inner
product ⟨·, ·⟩ with norm squared | · |2, ∆ is a finite set of nonzero elements of V such that

• ∆ spans V .

• the orthogonal transformations sα(φ) = φ− 2⟨φ,α⟩
|α|2 α sends ∆ to itself.

• 2⟨β,α⟩
|α|2 is an integer for α, β ∈ ∆.

an abstract root system is said to be reduced if α ∈ ∆ implies 2α /∈ ∆.
An abstract root system Φ is said to be reducible if ∆ admits a nontrivial disjoint decomposition ∆ =

∆′ ∪∆
′′
with every member of ∆

′
orthogonal to every member of ∆

′′
.

Example 2.2. Let g be a complex semisimple Lie algebra and h be its Cartan subalgebra, B the Killing
form of g, ∆ the set of roots of g, so we have g = h⊕

⊕
α∈∆ gα, the root space decomposition. The restriction

of B on h× h is nondegenerate and to each α we can find Hα ∈ h such that α(H) = B(H,Hα).
We let V be the R span of ∆ in h∗, then the restriction of ⟨·, ·⟩ makes V into a real inner product space.

For any root α, the simple reflection sα sends ∆ into itself and we can show that 2⟨β,α⟩
|α|2 ∈ Z for all α, β ∈ ∆.

Hence we see that the root system for complex semisimple Lie algebra is indeed an abstract root system.
We have the following examples of reduced irreducible root systems

• type An: vector space V = {Σn+1
i=1 aiei} with Σai = 0, ∆ = {ei − ej | i ̸= j}, the corresponding

complex Lie algebra is g = sl(n+ 1,C).
• type Bn: vector space V = {Σn

i aiei}, ∆ = {±ei ± ej | i ̸= j} ∪ {±ei}, the correspnding complex Lie
algebra is so(2n+ 1,C).

• type Cn: vector space V = {Σn
i=1aiei}, ∆ = {±ei ± ej | i ̸= j} ∪ {±2ei}, the corresponding complex

Lie algebra is g = sp(n,C).
• type Dn: vector space V = {Σn

i=1aiei}, ∆ = {±ei ± ej | i ̸= j}, the corresponding complex Lie
algerba is g = so(2n,C).

Definition 2.3. We will call a square matrix A a Cartan matrix, if it satisfies the following properties:
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• Aij is in Z for all i and j.
• Aii = 2 for all i.
• Aij ≤ 0 for i ̸= j.
• Aij = 0 if and only if Aji = 0.
• there exists a diagonal matrix D with positive diagonal entries such that DAD−1 is symmetric

positive definite.

Example 2.4. We fix an abstract root system Φ and we assume Φ is reduced. Fix a positivity ordering, and
let Π = {α1, · · · , αℓ}, ℓ = dimV be the set of simple roots, then we can associate a Cartan matrix A = {Aij}
to Φ with Aij =

2⟨αi,αj⟩
|αi|2 .

Proposition 2.5. The reduced root system Φ is reducible if and only if for some enumeration of indices,
the cartan matrix is block diagonal with more than one block.

To a reduced abstract root system Φ and Π a set of simple roots, we can associated a graph-Dynkin
diagram. We associate to each simple root αi a vertex of the graph, and we attach to that vertex a weight
propotional to |αi|2, if two simple vertices are given corresponding to distinct roots αi and αj , we connect
these vertices by AijAji edges. The resulting graph is the Dynkin diagram of Π.

3. Weyl group

Definition 3.1. Let Φ be an abstract root system in a finite dimensional real vector space V , we let W (Φ)
be the subgroup of the orthogonal group of V generated by the reflections sα for α ∈ ∆, this is the Weyl
group of Φ.

Example 3.2. We have the following examples of Weyl group

(1) For An, W consists of all permutations on ei, |W | = (n+1)!. For Bn and Cn W is generated by
all permutations of ei and the sign changes of the coefficients of ei, |W | = n!2n. For Dn, W consists
of all permutations of ei and even sign changes, |W | = n!2n−1.
(2) The Weyl group for the nonreduced root system of type (BC)2 has order 8.
(3) The Weyl group of G2 is of size 12 consists of 6 rotations through multiples of angles of π/3 and
6 reflections defined by sending a root to its negative leaving the orthogonal complement fixed.

Given a reduced root system, we can define a Cartan matrix, and we can use the Weyl group to show
that a reduced root system is determined by its Cartan matrix up to isomorphism.

Proposition 3.3. The Cartan matrix determines the reduced root system up to isomorphism.

Proof. Let’s first see that the Cartan matrix determines the set of simple roots up to a linear transformation
on V , we may assume Φ is irreducible, and let α1, · · ·αℓ be simple roots, the Cartan matrix determines
|αi| up to a common proportionality constant, let β1, · · ·βℓ be another simple system for the same Cartan

matrix, normalizing, we may assume |αj | = |βj | for all j. From the Cartan matrix, we get
2⟨αi,αj⟩
|αi|2 =

2⟨βi,βj⟩
|βi|2

for all i, j, and hence ⟨αi, αj⟩ = ⟨βi, βj⟩, in other words, the linear transformation Lαi = βi preserves the
inner product on a basis and hence orthogonal.

We want to see that the set {α1 · · ·αℓ} of simple roots determines the set of roots, let ∆′ be another set
of roots, then since for any α ∈ ∆′, we can find s ∈ W (Φ) such that sαj = α, for some simple root αj , we
see ∆ = ∆′. □

4. Classification result

We can classify the abstract Cartan matrices from the properties they satisfy and then we can show that
every Cartan matrices arise from a reduced abstract root system. Since the Cartan matrix A determines the
abstract Dynkin diagram up to a proportionality constant, we have the following classification result stated
in terms of Dynkin diagram

Theorem 4.1. (Classification) Up to isomorphism, the connected abstract Dynkin diagrams are An for
n ≥ 1, Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4, E6, E7, E8, F4 and G2.
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Abstract root systems that are not necessarily reduced arise in the structure theory of real semisimple Lie
algebras and also the root system for symmetric varieties.

Example 4.2. Forming the union of the root systems Bn and Cn, we get a root system (BC)n with
V = {Σn

i=1aiei}, ∆ = {±ei ± ej | i ̸= j} ∪ {±ei} ∪ {±2ei}.

Proposition 4.3. Up to isomorphism the only irreducible abstract root systems ∆ that are not reduced are
of the form (BC)n for n ≥ 1.

Theorem 4.4. (Serre) Let g be a complex semisimple Lie algebra and let X = {hi, ei, fi}ℓi=1 be a set of
canonical generators. Let F be the free Lie algebra on 3ℓ generators hi, ei, fi, let R be the ideal generated by
F by Serre relations, then the canonical homomorphism of F/R → g is an isomorphism.

We can lift the isomorphisms between root systems to isomorphisms between complex Lie algebras

Theorem 4.5. Let g and g′ be complex semisimple Lie algebras with corresponding Cartan subalgebras h
and h′ and root systems Φ and Φ′, suppose there is a vector space isomorphism φ : h → h′ which induces φt

and φt(∆′) = ∆, fix Π a simple system for ∆, for each α ∈ Π select nonzero vectors Eα ∈ g and Eα′ ∈ g′ for
α′. Then exists one and only one Lie algebra isomorphsim φ̃ : g → g′ such that φ̃|h = φ and φ̃(Eα) = Eα′

for all α ∈ Π.

The proof of this theorem uses the theorem of Serre 4.4 on the generator relations of complex Lie algebras.
Next, we can show that any reduced root system is the root system of a complex semisimple Lie algebra.

Theorem 4.6. If A = (Aij) is an abstract Cartan matrix, then there exists a complex Lie algebra g whose
root system has A as Cartan matrix.
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