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1. Introduction

This is a study note for Plancherel formula for SL2(R) following Varadarajan’s book.

2. Plancherel formula for SL2(C)

For G = SL2(C), let’s denote H the maximal diagonal torus, we have a map Ĥ → Ch(G) and the fibers
are precisely the orbits for Weyl group, then the Plancherel formula becomes

f(1) =

∫
Ĥ

f̂(χ)µ(χ) dχ

where µ is a Weyl group invariant nonnegative continuous function. An explicit formula for µ together with
the explicit formula for Θχ will be a complete and far-reaching generalization of the compact theory.

We will introduce the orbital integrals on G and its Lie algebra. Let H be the diagonal matrices and
h ⊂ g its Lie algebra, let h′ ⊂ h be the elements with distinct diagonal entries.

For V an Euclidean space, we will denote S0(V ) the space of linear functions that

supv∈V (1 + ||v||2)q|f(v)| <∞
S(V ) the space of C∞ functions such that all derivatives are in S0(V ).

Definition 2.1. For f ∈ S0(g), the orbital integral of f on g is defined as

ψf (X) = π(X)

∫
G/H

f(xXx−1)d(G/H)

for X ∈ h′, here π(X) = x1 − x2.

We have the conjugacy map

φ : G/H × h′ −→ g′, xH,X 7→ xXx−1

φ is proper and all its fibers have cardinality 2, we have the following formula

φ∗ωg = ±|π(X)|4d(G/H)dh

We have the following Lie algebra version of the Weyl integration formula

Lemma 2.2. For all f ∈ S0(g) ∫
g

fdg =
1

2

∫
h′
|π(X)|2ψf (X) dh
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For any g ∈ S(g), we can define the Fourier transform

ĝ(Y ) =

∫
g

g(Z)ei⟨Y,Z⟩dg(Z)

we can also define Fourier transform on h

ĥ(Y ) =

∫
h

ei⟨Y,Z⟩h(Z) dh(Z)

Proposition 2.3. We have the following

ψf̂ (X) = (2π)ψ̂f (X)

We can introduce a differential operator ∆ on S(g) and it satisfies

(−1)(∆∆u)̂(Y ) = |π(Y )|2û(Y )

Theorem 2.4. (limit formula for g) Let

ψf (X) = |π(X)|2
∫
G/H

f(xXx−1)d(G/H)

X ∈ h′, then for all f ∈ S(G)

f(0) =
(−1)2(2−1)/2

(2π)2(2−1) · 2!
(∆∆ψf )(0)

for X ∈ h′.

Proof. We have for f ∈ S(g)

f(0) =
1

(2π)2(22−1)

∫
f̂ dg

=
1

(2π)2(22−1)2!

∫
|π|2ψf̂ dh

=
1

(2π)2(2−1)+22−2 · 2!

∫
|π|2ψ̂f dh

=
1

(2π)2(2−1)+22−2 · 2!

∫
(∆∆ψf )̂ dh

=
(−1)2(2−1)/2

(2π)22−2 · 2!
(∆∆ψf )(0)

where we used the Weyl integration formula 2.2, the relation between the Fourier transform on g and h
2.3. □

Proposition 2.5. We define g(ϵ) = {u ∈ g| |λ| < ϵ for all eigenvalues λ of u}, G(ϵ) = {z ∈ G| |λ| <
ϵ for all eigenvalues λ of z − 1}, then g(ϵ) (resp. G(ϵ)) form a basis for the family of invariant open
neighborhoods of 0 in g ( resp. 1) in G, and if ϵ > 0 is sufficiently small, exp is a diffeomorphism of g(ϵ)
onto an invariant open neighborhood of 1 in G.

We can recover f(1) from Ff (1)

Theorem 2.6. Define Ff by

Ff (h) = |∆(h)|2
∫
G/H

f(xhx−1) d(G/H)

where dG = dg, dH = dh then

f(1) =
(−1)2(2−1)/2

(2π)22−2 · 2!
(∆∆Ff )(1)
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Proof. We can find j ∈ C∞(G), for sufficiently small ϵ, we have jf ∈ C∞
c (G), suppjf ⊂ exp(g(ϵ)), jf = f

in an invariant neighborhood of 1. We set g(Z) = f(expZ), then g ∈ C∞
c (g), for X ∈ g(ϵ) ∩ h′, h = expX ∈

H ′ ∩ exp(g(ϵ)), for such X

Ff (exp X) = |∆(exp X)|2
∫
G/H

f(xexpXx−1)d(G/H) = |ω(X)|2ψg(X)

for ω(X) = ∆(X)
π(X) , X ∈ h′.

We can find an invariant entire function ω1 on g which restricts to ω(X)2. For sufficiently small ϵ, |ω1| is
a real-analytic function, |ω1|g ∈ C∞

c (g(ϵ)) for all g ∈ C∞
c (g(ϵ)), and we have

Ff (expX) = ψ|ω1|gX

for X ∈ h′ ∩ g(ϵ). Applying ∆∆ to both sides and let X → 0, we get 2.6 from 2.4 as |ω1|(0) = 1 and

g(0) =
(−1)2(2−1)/2

(2π)2(2−1)2!
(∆∆ψg)(0)

□

Lemma 2.7. Let µ be the function on Ĥ given by

µχm1,m2
;iρ1,iρ2 = [(m1 −m2)

2 + (ρ1 − ρ2)
2]

where χm1,m2;iρ1,iρ2 is the character

diag(z1, z2) 7→
2∏
j=1

(zj/|zj |mj )|zj |iρj

the mi are integers and ρj are real numbers with
∑
mj = 0 and

∑
ρj = 0, then for any f ∈ C∞

c (H), we
have

(−1)2(2−1)/2(∆∆f )̂(x) = µ(χ)f̂(χ)

Theorem 2.8. (Plancherel formula for SL2(C)) For any character χ of H and let Tχ be the distribution
character of the principal series Lχ, computed with respect to the Haar measure dG = dg, let dχ be the

measure on Ĥ, then for any f ∈ Ĥ, we have

f(1) =
1

(2π)22−22!

∫
Ĥ

Tχ(f)µ(χ) dχ

where

µχm1,m2
;iρ1,iρ2 = [(m1 −m2)

2 + (ρ1 − ρ2)
2]

Proof. We have by theorem 2.6,

f(1) =
(−1)2(2−1)/2

(2π)22−2 · 2!
(∆∆Ff )(1)

=
(−1)2(2−1)/2

(2π)22−2 · 2!

∫
Ĥ

(∆∆Ff )̂(χ) dχ

=
(−1)2(2−1)/2

(2π)22−2 · 2!

∫
Ĥ

F̂f (χ)µ(χ) dχ

=
(−1)2(2−1)/2

(2π)22−2 · 2!

∫
Ĥ

Tχ(f)µ(χ) dχ

□

The key ingredient of this method is that there is a single conjugacy class of Cartan subgroups. In the
general case, where there are several conjugacy classes of Cartan subgroups, the proof of the Plancherel
formula becomes very difficult.
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3. Plancherel formula for SL2(R)

3.1. Unitary representations of SL2(R) and their characters. Let G = SL2, K = SO2 = {uθ =(
cos θ sin θ
−sin θ cos θ

)
} the maximal compact, B = MAN the Levy-Langlands decomposition, M = {1, γ},

γ = −
(
1 0
0 1

)
, A = {at =

(
et

e−t

)
}, H =MA.

Definition 3.1. A Cartan subgroup is the group of real points of a maximal torus of GC defined over R.
They are precisely the centralizers of the regular elements.

The principal series of G are πϵ,λ = IndGBχ with χ = (ϵ, λ), ϵ = 0, 1 ∈ M̂, λ ∈ C = Â

χϵ,ρ : diag(a, a−1) 7→ sign(a)ϵ|a|ρ

We denote •̂ the abelian Fourier transform on H =MA, then

Theorem 3.2. Let χ be any character of H, χ = (ϵ, η), for any f ∈ C∞
c (G), we have

Tχ(f) = F̂f,H(χ)

here

Ff,H(h) := |∆(h)|R
∫
G/H

f(xhx−1) dẋ

here ∆(diag(a, a−1)) = |a− a−1|.

We denote G′
H as all x ∈ G with distinct eigenvalues in R. We have the following explicit formula for Tχ

Theorem 3.3. Let χ be a quasicharacter of H, then there is a unique invariant function θχ on G which is
zero outside G′

H and coincides with

(
∑
ω∈W

χω)/ |∆|R

on H ′, locally integrable on G and is the character of the principal series πχ

Tχ(f) =

∫
G

θχf dx

Proof. We omit the proof for the existence of θχ with desired property, we show that θχ is the character of

πχ = indGBχ.
Since θχ is outside G′

H , from Weyl integration formula∫
G′

H

θχf dx =
1

2

∫ ∫
G/H×H′

θχ(xhx
−1)f(xhx−1)|∆(h)|2R dxdh

use Fθχf,H = |∆(h)|R
∫
G/H

θχf(xhx
−1) dx, we have∫
G

θχf dx =
1

2

∫
H

|∆|RFθχf,H dh

=
1

2

∫
H

(
∑
ω

χω)Ff,H dh

=

∫
Fχ,Hχ dh

= F̂f,H(χ)

= Tχ(f)

here we used that θχ =
∑

ω χ
ω

|∆|R on G′
H and Fθχf,H(h) = θχ(h)Ff,H(h). □
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More explicitly, we have

θχ(diag(a, a
−1)) =

χ(a) + χ(a−1)

|a− a−1|
We also have the character formula for discrete series-the unitary representations with matrix coefficients

square-integrable on G

Theorem 3.4. Let’s denote χn : uθ 7→ einθ the characters of K, there is a discrete series representation
associated with χn for n ̸= 0 and its character Θχ is a locally integrable function with the following formula

Θn(uθ) = −sgn(n)
einθ

eiθ − e−iθ
, (θ ̸= 0, π)

Θn(diag(a, a
−1)) = sgn(a)

a−|n|

|a− a−1|
(|a| > 1)

These formula obtained by Harish-Chandra, strongly suggested that the discrete series representations
associated with the compact torus K in the same way as the principal series associated with H the split
torus.

3.2. Orbital integrals.

3.2.1. Orbital integrals for hyperbolic elements.

Definition 3.5. For L the Cartan subgroup, we define the orbital integral

Ff,L(mat) :=
1

2
|et − e−t|

∫
G/A

f(xmatx
−1)d(G/A)

then use dG = 1
2e

2tdθdsdt, we can show

Ff,L(at) =
1

4
et
∫
f(atns)ds

for f(x) =
∫
f(uθxu−θ)dθ, hence f 7→ Ff,L extends to a continuous map of C∞

c (G) → C∞
c (L).

Letting t→ 0±, and note Ff,L is an even function, we obtain

Theorem 3.6. We have

• Ff,L(1) =
1
4

∫∞
−∞ f(ns)ds

• F ′
f,L(1) = 0.

We can also define the orbital integral for Lie algebra.

Definition 3.7. We define

ψf,a(tH) = 2|t|
∫
G/L

f(x(tH)x−1)d(G/L)

for t ̸= 0.

We have the Fourier transform on g and h

Definition 3.8. For g ∈ S(g) and h ∈ S(a), we define

ĝ(u) =

∫
g

g(v)ei⟨u,v⟩dg

ĥ(u) =

∫
a

h(v)ei⟨u,v⟩da

where ⟨u, v⟩ = 1
2 tr(uv).

Theorem 3.9. The map f → ψf,a from S(g) to S(a) is continuous and

• ψf,a(0) =
1
4

∫∞
−∞ f(sX)ds and ψ′

f,a(0) = 0.

• ψf̂ ,a(tH) = 2πψ̂f,a(tH).
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Finally, similar to the complex group case, Ff,L and ff,a are connected by exponential map, and for
sufficiently small t, we have

Ff,L(at) = |e
t − e−t

2t
|ψg,a(tH)

for g = f ◦ exp.

3.2.2. Orbital integrals for elliptic elements. We introduce ∆(uθ) = eiθ − e−iθ.

Definition 3.10. We define the orbital integral for elliptic elements to be

Ff,K(uθ) = ∆(uθ)

∫
G/K

f(xuθx
−1)d(G/K)

we note that Ff,K is not continuous at 1.

Definition 3.11. We define the orbital integral for Lie algebra as

ψg,k(θ(X − Y )) = 2iθ

∫
G/K

g(θx(X − Y )x−1)d(G/K)

we have the following formula for ψg,k

ψg,k(θ(X − Y )) =
1

2π
iθ

∫ ∫ ∫
0≤θ<2π, t>0

g(θ(X − Y )uθ1
at)sinh2t dθ1 dθ2 dt

=
iθ

2

∫ ∞

0

g(θ(e2tX − e−2tY ))(e2t − e−2t) dt

Proposition 3.12. If E ⊂ K ′ is a compact set, then the map

f 7→ Ff,K |E

is a continuous map from C∞
c (G) to C∞

c (E).

For all small θ ̸= 0, we have

Ff,K(uθ) =
(eiθ − e−iθ)

2iθ
ψg,k(θ(X − Y ))

where g = f ◦ exp.
The problem now is to investigate the bahaviour of Ff,K and its derivatives near 1 and relate this to Ff,L,

this comes down to the relation at the Lie algebra level.

3.2.3. Some integration formulas.

Proposition 3.13. If we denote •̂ the Fourier transform on L with respect to dL = dMdt, for Tϵ,λ the
characters of πϵ,λ, we have

Tϵ,λ(f) = F̂f,L(ϵ, λ)

for f ∈ C∞
c (G)

We denote Gell, Ghyp the open invariant set z of G such that |tr(z)| < 2 (resp. |tr(z)| > 2). Then

G′ = Gell ⊔Ghyp

we have maps

φell : G/K ×K ′ → Gell, φhyp : G/L× L′ → Ghyp

and

φ∗
elldG = |eiθ − e−iθ|2dG/K dθ

φ∗
hypdG = |et − e−t|2G/L dL
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Proposition 3.14. (Harish-Chandra integration formula) If f is a Borel function on G, then f ∈ L1(G) if
and only if F|f |,K and F|f |,L exist almost everywhere on B and L respectively and∫

K

|∆(uθ)|F|f |,K(uθ)dθ <∞,

∫
L

|et − e−t|F|f |,LdL <∞

Then we have ∫
G

f dG = −
∫
K

∆(uθ)Ff,K(uθ)dθ +

∫
R
|et − e−t|Fh,L(at) dt

where h = (f + fγ)/2.

We have the following lemma

Lemma 3.15. Fix u ∈ C∞
c (R2) and

U(θ) = θ

∫ ∞

0

u(θe2t, θe−2t)(e2t − e−2t) dt, θ ̸= 0

then

• U(0±) and d
dθU(0±) exists.

• d
dθU is continuous at θ = 0 and d

dθU(0) = −u(0, 0).
• U(0±) = ± 1

2

∫∞
0
u(±s, 0) ds.

we can apply this lemma to

ψg,k(θ(X − Y )) =
iθ

2

∫ ∞

0

g(θ(e2tX − e−2tY ))(e2t − e−2t) dt

for g =
∫
guθ dθ.

Theorem 3.16. (limit formula) We have

• For all f ∈ C∞
c (G), F ′

f,K(uθ) =
d
dθFf,K(uθ) is continuous at θ = 0 and

1

i
F ′
f,K(1) = −πf(1)

• For all g ∈ S(g), d
dθψg,k(θ(X − Y )) is continuous at θ = 0 and

1

i
(
d

dθ
ψψg,k

)(0) = −πg(0)

The orbital integral Ff,K(uθ) is not continuous at θ = 0 and the jump at θ = 0 is related to the hyperbolic
orbital integral Ff,L(1).

Theorem 3.17. (Harish-Chandra jump relation) For all f ∈ C∞
c (G)

[
1

i
Ff,K(uθ)]

θ=0+

θ=0− = Ff,L(1)

For all g ∈ S(g)

[
1

i
ψg,k(θ(X − Y ))]θ=0+

θ=0− = ψg,a(0)

Proof. We only need to prove this at the Lie algebra level, this follows from

ψg,k(0±) = ± i

4

∫ ∞

0

g(±sX) ds

and

ψg,a(0) =
1

4

∫ ∞

−∞
g(sX) ds

hence
1

i
ψg,k(0+)− 1

i
ψg,k(0−) =

1

4

∫ ∞

−∞
g(sX) = ψg,a(0)

□
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Proposition 3.18. For all f ∈ C∞
c (G), we have∫

ΘmfdG = sgn(m)

∫
eimθFf,K(uθ)dθ +

∫ ∞

0

e−|m|tFh,L(at)dt

Proof. By the Harish-Chandra integral formula 3.14 and the character formula for discrete series 3.4, we
obtain ∫

G

ΘmfdG = sgn(m)

∫
eimθFf,K(uθ)dθ +

∫ ∞

0

e−|m|tFh,L(at)dt

□

Corollary 3.19. For Θm characters of πm, we have∫
G

ΘmΩfdG = m2

∫
G

ΘmfdG

The boundary terms at θ = 0, π, t = 0 gets cancelled because of the limit formula and jump relations.

3.3. Proof of Plancherel formula. Recall that we have characters Θm, Tϵ,λ, ϵ = 0, 1 and λ ∈ iR.

Lemma 3.20. For any integer r ≥ 1 there is a continuous seminorm µ on C∞
c (G) such that

|Θm(f)| ≤ m−2µ(f)

|Tϵ,λ(f)| ≤ (1 + |λ|2)−rµ(f)

for all f ∈ C∞
c (G) and m ̸= 0, all λ ∈ iR.

This lemma assures the convergence of the series and integrals that we shall encounter. Put

F̂f,K(m) =

∫
Ff,K(uθ)e

imθdθ

Proposition 3.21. For all f ∈ C∞
c (G), we have∫

G

Θmf dG = sgn(m)

∫
eimθFf,K(uθ) dθ +

∫ ∞

0

e−|m|tFh,L(at)dt

here h = f + (−1)m−1fγ .

Proof. From proposition 3.18, we have

F̂f,K(m) = sgn(m)Θm(f)− sgn(m)

∫ ∞

0

e−|m|tFh,L(at)dt

use integration by part to e−|m|tFh,L, we get the result. □

We can now calculate the Fourier transform of F ′
f,K

Proposition 3.22. For all f ∈ C∞
c (G), m ∈ Z writing ′ for d/dθ and d/dt, then we have

(−iF ′
f,K(m)̂) = −|m|Θm(f) +

∫ ∞

0

e−|m|tF ′
h,L(at)dt

Proof. We have

(−iF ′
f,K(m)̂) = −i

∫
F ′
f,K(uθ)e

imθdθ

= −1

i
[Ff,K(uθ)]

0+
0− − 1

i
[Ff,K(uθ)e

imθ]π
+

π− −mF̂f,K(m)

apply the result from previous proposition 3.21, and note

Ff,K(uθ+π) = −Ffγ ,K(uθ)
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we get

(−iF ′
f,K(m)̂) = −|m|Θm(f) +

∫ ∞

0

e−|m|tF ′
h,L(at)dt

+ {Ff,L(1)−
1

i
[Ff,K(uθ)]

0+
0−}

+ (−1)m−1{Ffγ ,L(1)−
1

i
[Ffγ ,K(uθ)]

0+
0−}

the expressions within {} are zero by Harish-Chandra jump relation, hecne the result. □

Since F ′
f,K is continuous at θ = 0, we have

2π(
1

i
F ′
f,K(uθ))θ=0 =

∑
m

(
1

i
F ′
f,K(m)̂)

by the limit formula 3.16
1

i
F ′
f,K(1) = −πf(1)

hence by proposition 3.22, we get

−2π2f(1) =
∑
m

(
1

i
F ′
f,K(m)̂)

= −|m|Θm(f) +

∫ ∞

0

e−|m|tF ′
h,L(at))dt

We can separate the cases f = ±fγ

Proposition 3.23. For f = fγ , we have

(3.1) 2π2f(1) =
∑
m odd

|m|Θm(f) +
1

2

∫ ∞

0

µtanh(πµ/2) · T0,iµ(f)dµ

Proof. For f = fγ , f + (−1)m−1fγ = 0 for m even and 2f for m odd.
we have

2π2f(1) =
∑
m odd

|m|Θm(f)− 2
∑
modd

∫ ∞

0

e−|m|tF ′
f,L(at)dt

=
∑
m odd

|m|Θm(f)− 2

∫ ∞

−∞

t

et − e−t
F ′
f,L(at)/t dt

For f = fγ , we have ∫ ∞

−∞
Ff,L(at)e

iµtdt =
1

2
F̂f,L(0, iµ)

We now apply the Plancherel formula over R to the last term,

(
t

et − e−t
)̃(µ) =

d

dµ
tanh

πµ

2

for ũ(µ) =
∫∞
−∞ u(t)eiµt dt. We get∫ ∞

−∞

t

et − e−t
F ′
f,L(at)/t dt = − 1

2π

∫ ∞

−∞

π

2
tanh(

πµ

2
)
µ

2
T0,iµ(f)dµ

remember that T0,iµ = T0,−iµ, put all things together, we get

2π2f(1) =
∑
m odd

|m|Θm(f) +
1

2

∫ ∞

0

µtanh(
πµ

2
) · T0,iµ(f)dµ

□
9



For f = −fγ , we have

(3.2) 2π2f(1) =
∑

m even

|m|Θm(f) +
1

2

∫ ∞

0

µcoth(
πµ

2
)T1,iµ(f)dµ

Combining equations (3.1) and (3.2) together, we get

Theorem 3.24. (Plancherel formula) Let the distribution characters be computed with respect to the Rie-
mannian Haar measure d G, then for all f ∈ C∞

c (G)

2π2f(1) =
∑
m ̸=0

Θm(f) +
1

2

∫ ∞

0

µ tanh(πµ/2) · T0,iµ(f) dµ+
1

2

∫ ∞

0

µ coth(πµ/2) · T1,iµ(f) dµ
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