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1. INTRODUCTION

This is a study note for Plancherel formula for SLs(R) following Varadarajan’s book.
2. PLANCHEREL FORMULA FOR SLy(C)

For G = SLy(C), let’s denote H the maximal diagonal torus, we have a map H — Ch(G) and the fibers
are precisely the orbits for Weyl group, then the Plancherel formula becomes

f() = /H FOOu(x) dx

where p is a Weyl group invariant nonnegative continuous function. An explicit formula for u together with
the explicit formula for ©, will be a complete and far-reaching generalization of the compact theory.

We will introduce the orbital integrals on G and its Lie algebra. Let H be the diagonal matrices and
b C g its Lie algebra, let §’ C b be the elements with distinct diagonal entries.

For V' an Euclidean space, we will denote Sp(V') the space of linear functions that

supyey (1+ [Jv]*)?]f(v)] < 00
S(V) the space of C* functions such that all derivatives are in So(V).
Definition 2.1. For f € Sy(g), the orbital integral of f on g is defined as

5 (X) = m(X) - fleXa™h)d(G/H)

for X € b, here n(X) = 21 — 2.
We have the conjugacy map
0:G/HxY —¢, zH X —aXz!
 is proper and all its fibers have cardinality 2, we have the following formula
prwg = £[m(X)["d(G/H)dh
We have the following Lie algebra version of the Weyl integration formula

Lemma 2.2. For all f € Sy(g)
1 2
/gfdg— 2/{)/ (X" (X) db
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For any g € S(g), we can define the Fourier transform

§(Y) = / o(2)é ) dg(2)
g

we can also define Fourier transform on b

h(Y) = /h Y2 n(z) dy(2)

Proposition 2.3. We have the following
V(X)) = (2m) s (X)

We can introduce a differential operator A on S(g) and it satisfies

o~

(~D(AAu)(Y) = |x(Y)[*a(Y)
Theorem 2.4. (limit formula for g) Let

by(X) = [r(X) 2 /G |, faxeha@ym

X €, then for all f € S(G)

(71)2(271)/2 o
f(0) = m(AA%‘)(O)
for X ey,

Proof. We have for f € S(g)
f(0) = (277)21(22—1>/f dg
B M/IW%J; db
- (277)2(2*1;2272.2! /|7T|21ﬁf db
- (277)2(2—1;22_2 = /(A&pfj b

(_1)2(2—1)/2

= emF—2.2l (AAY;)(0)

where we used the Weyl integration formula [2:2] the relation between the Fourier transform on g and b

23

Proposition 2.5. We define g(e) = {u € g| |\| < € for all eigenvalues A of u}, G(e) = {z € G| |\| <
e for all eigenvalues X of z — 1}, then g(e) (resp. G(e)) form a basis for the family of invariant open
neighborhoods of 0 in g (resp. 1) in G, and if € > 0 is sufficiently small, exp is a diffeomorphism of g(e)

onto an invariant open neighborhood of 1 in G.
We can recover f(1) from Fy(1)
Theorem 2.6. Define Fy by

Fy(h) = |A(h)? fleha™") d(G/H)
G/H
where dG = dg, dH = db then
(_1)2(2—1)/2
(2m)2*-2. 2
2

Q) = (AAF)(1)



Proof. We can find j € C(G), for sufficiently small e, we have jf € C°(G), suppjf C exp(g(e)), if = f
in an invariant neighborhood of 1. We set g(Z) = f(expZ), then g € C°(g), for X € g(e) N, h = expX €
H' nexp(g(e)), for such X
Fy(exp X) = [A(exp X)|? » flwexpXa™")d(G/H) = |w(X)*1g(X)
H

for w(X) = ﬁ(())(()), X ey

We can find an invariant entire function w; on g which restricts to w(X)?. For sufficiently small €, |w] is
a real-analytic function, |wi|g € C°(g(e)) for all g € C°(g(e)), and we have

Fr(expX) = Pju, g X
for X € b’ Ng(e). Applying AA to both sides and let X — 0, we get from as |w1|(0) =1 and

-1 2(2-1)/2 B
((27r))2<2—1>2!(AA1/)g)(0)

9(0) =

Lemma 2.7. Let p be the function on H given by

HXmy,moiip1yips = [(m1 — m2)2 + (p1 — P2)2]
WRETe Xy masip,ips S the character
2
diag(z1,22) = [] (2i/12;1™)]2;]"
j=1

the m; are integers and p; are real numbers with Y m; = 0 and Y p; = 0, then for any f € CX(H), we
have

(—1)2C=D/2(ARF)(z) = u(x) f(x)

Theorem 2.8. (Plancherel formula for SLy(C)) For any character x of H and let T, be the distribution
character of the principal series L,, computed with respect to the Haar measure dG = dg, let dx be the

measure on H, then for any f € H, we have

1
f(1) = WQQZ,/H Ty (f)u(x) dx
where
HXmy moiip1yips = [(m1 — ma)® + (p1 — 02)2]

Proof. We have by theorem [2.6]

O

The key ingredient of this method is that there is a single conjugacy class of Cartan subgroups. In the
general case, where there are several conjugacy classes of Cartan subgroups, the proof of the Plancherel
formula becomes very difficult.
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3. PLANCHEREL FORMULA FOR SLy(R)

3.1. Unitary representations of SL3(R) and their characters. Let G = SLy, K = SOy = {ug =
( cos 0 sin 0

—sin 6 cos 0

G e (€ e

Definition 3.1. A Cartan subgroup is the group of real points of a maximal torus of G¢ defined over R.
They are precisely the centralizers of the regular elements.

)} the maximal compact, B = M AN the Levy-Langlands decomposition, M = {1,~},

The principal series of G are 7 = Indgx with x = (e, A), e=0,1¢€ M, xeC=A
Xe,p : diag(a,a™') ~ sign(a)|al’
We denote e the abelian Fourier transform on H = M A, then
Theorem 3.2. Let x be any character of H, x = (e,7n), for any f € C(G), we have
T (f) = Fru(x)

here

Fyp(h) = |A(h)|R/ f(xha™t) di
G/H
here A(diag(a,a™t)) = |a —a™ 1.
We denote G as all x € G with distinct eigenvalues in R. We have the following explicit formula for T},

Theorem 3.3. Let x be a quasicharacter of H, then there is a unique invariant function 0, on G which is
zero outside Gy and coincides with

(> X))/ 1AL

weWw

on H', locally integrable on G and is the character of the principal series my

Tx(f) = / Oy f dz
G
Proof. We omit the proof for the existence of 6, with desired property, we show that 6, is the character of

Ty = indg X-
Since 6y, is outside Gy, from Weyl integration formula

1
0. f de — - // 0, (zha")f(wha V) AR dedh
G, 2) Jaaxu

use Fy s = |A(R)|r fG/H 0, f(zhz~1) dz, we have

1
/ 9Xf d:C = 5/ ‘A|RF0Xf,H dh
G H

1
= 5/H(Z X“)Fy,g dh

w

:/FX,HX dh

= Fr.un(x)
=T (/)
here we used that 6, = Z‘:&R“ on Gy and Fy, ¢z (h) = 0 (h)Ff r(h). O
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More explicitly, we have
. - x(a) +x(a™)
0, (diag(a,a 1)) = L2 7
X( g( )) |CL _ a_1|
We also have the character formula for discrete series-the unitary representations with matrix coefficients
square-integrable on G

Theorem 3.4. Let’s denote xn : ug — e the characters of K, there is a discrete series representation
associated with x, for n # 0 and its character ©y, is a locally integrable function with the following formula

ein@
@n(UQ) = _Sgn(n)m, (6 # 0, 7T)
JY
On(diag(a,a™)) = Sgn(a)m (la| > 1)

These formula obtained by Harish-Chandra, strongly suggested that the discrete series representations
associated with the compact torus K in the same way as the principal series associated with H the split
torus.

3.2. Orbital integrals.
3.2.1. Orbital integrals for hyperbolic elements.

Definition 3.5. For L the Cartan subgroup, we define the orbital integral

e flzmaz™)d(G/A)
G/A

Frp(may) == = |e
then use dG = 1 e**dfdsdt, we can show

Frr(at) /f aing)d

for f(z) = [ f(upru_g)dd, hence f — Fy 1 extends to a continuous map of C°(G) — C(L).
Letting ¢ — 0+, and note Fy 1, is an even function, we obtain

Theorem 3.6. We have

.FfL —4f fns
.F/,(> 0.

We can also define the orbital integral for Lie algebra.
Definition 3.7. We define
Ura(tH) =2 [ Gt d(G/L)
G/L
for t # 0.
We have the Fourier transform on g and b

Definition 3.8. For g € S(g) and h € S(a), we define

3(u) = / g(0)etu) dg
g

u) = /h(v)e““’wda
a

Theorem 3.9. The map f — vy q from S(g) to S(a) is continuous and
o V5a(0) =1 [70 F(sX)ds and 4} ,(0) = 0.
. wf,u(tH) = 2y o (tH).

where (u,v) = tr(uv).



Finally, similar to the complex group case, Fy and fq are connected by exponential map, and for

sufficiently small ¢, we have
t

et —e7t
Frp(ay) = |T|¢g,u(tH)
for g = f o exp.

3.2.2. Orbital integrals for elliptic elements. We introduce A(ug) = ¥ — e=%.

Definition 3.10. We define the orbital integral for elliptic elements to be
Fy i (ug) = A(ug) fzugz™")d(G/K)
G/K
we note that Fy i is not continuous at 1.

Definition 3.11. We define the orbital integral for Lie algebra as
Ve (0(X —Y)) = 2i0 g(02(X = Y)z™1)d(G/K)
G/K

we have the following formula for 1, ¢

g e(0(X —Y)) = i29/// g(0(X — Y)"o19)sinh2t dfy dbs dt
2 0<0<2m, 10
= g 000 G(0(e*' X —e2Y))(e* — 72 dt
Proposition 3.12. If E C K’ is a compact set, then the map
f= Frile
is a continuous map from C(G) to C*(E).
For all small 6 # 0, we have

(6! — e=i0)

Fr i (ug) = 20 g e(0(X —Y))

where g = f o exp.
The problem now is to investigate the bahaviour of F¢ x and its derivatives near 1 and relate this to FY,r,
this comes down to the relation at the Lie algebra level.

3.2.3. Some integration formulas.

Proposition 3.13. If we denote ® the Fourier transform on L with respect to dL = dMdt, for T, x the
characters of ., we have

T (f) = Fro(e,\)
for f € CZ(G)
We denote Geni, Gryp the open invariant set z of G such that |tr(z)| < 2 (resp. |tr(z)| > 2). Then
G' = Gen U Ghyp
we have maps
ven: G/K XK' = Gen, ¢nyp : G/L x L' = Gryp
and
©idG = e — e72dG /K df

PropdG = le" — e '’ G/L dL
6



Proposition 3.14. (Harish-Chandra integration formula) If f is a Borel function on G, then f € LY(G) if
and only if Fiy| x and Fy| 1 exist almost everywhere on B and L respectively and

/K |A(ug) | Fg),x (ua)d < oo, /L le" — e !|Fy),dL < oo
Then we have
/ fdG = —/ A(ug)Ff,K(ue)dG—i—/ |et - e_t|Fh’L(at) dt
G K R
where h = (f + f,)/2.

We have the following lemma

Lemma 3.15. Fiz u € C2°(R?) and

0) = 9/ u(0e?t, e (e* —e72) dt, 0 #0
0

then
D U(O:I:) and LU(0L) exists.
24U is continuous at 0 = 0 and LU(0) = —u(0,0).
. U 04) = +1 [ u(+s,0)

we can apply this lemma to
i0 _ _ _
Ua00X = ¥)) = 5 [ 50X - ey - )
0
for g = [ g“o db.
Theorem 3.16. (limit formula) We have
e Forall f € CX(G), Fy x(ug) = L Fr i (ug) is continuous at § = 0 and

1
LB c1) = —m (1)

e Forall g € S(g), Lpge(0(X —Y)) is continuous at § = 0 and

(L0,.)(0) = ~9(0)

The orbital integral Fy i (ug) is not continuous at ¢ = 0 and the jump at § = 0 is related to the hyperbolic
orbital integral F 1,(1).

Theorem 3.17. (Harish-Chandra jump relation) For all f € C*(QG)

1 _o+
[;fo(ue)]Z;Sf = Fy (1)

7

For all g € S(g)
[0 (00X = V)8 = a(0)

Proof. We only need to prove this at the Lie algebra level, this follows from

ng,e(()i):ii/ G(£sX) ds
0
and

Yg.a(0) = i/oo g(sX) ds

— 00

hence

Hal04) = 00e0) = 1 [ 6X) = 60000



Proposition 3.18. For all f € C°(G), we have
/@mfdGz sgn(m)/eimGFf,K(ue)dG—F/ eI, 1 (ay)dt
0
Proof. By the Harish-Chandra integral formula and the character formula for discrete series we

obtain

/@mfdG:sgn(m)/eimenyK(w)dGJr/ e”ImItE, 1 (ay)dt
G 0

|
Corollary 3.19. For ©,, characters of m,, we have
/ 0,,0fdG = m2/ O,, fdG
G G
The boundary terms at 0 = 0,7,t = 0 gets cancelled because of the limit formula and jump relations.

3.3. Proof of Plancherel formula. Recall that we have characters ©,,, T, », € = 0,1 and A € iR.
Lemma 3.20. For any integer r > 1 there is a continuous seminorm pu on C°(G) such that

Om ()] < m™2u(f)

Ten () < L+ M) " ulf)
forall f € CP(G) and m #0, all X € iR.

This lemma assures the convergence of the series and integrals that we shall encounter. Put
Ff,K(m) = /Ff,K(ue)eimedH
Proposition 3.21. For all f € C(G), we have
/ O f dG = sgn(m)/eimenyK(ug) do +/ ef‘mlch,L(at)dt
G 0
here h = f+ (=1)""1f,.
Proof. From proposition [3.18] we have
oo
Frac(im) = sga(m)@n() —sgnlm) [ e M E )
0

use integration by part to e“m“Fh,L, we get the result. (|

We can now calculate the Fourier transform of F' J’c K

Proposition 3.22. For all f € C°(G), m € Z writing’ for d/d0 and d/dt, then we have

o~

(=iF} (m)) = —m|O(f) + /Ooo eImIEy L (aq)dt

Proof. We have

(<iFp g (m)) = =i [ Ffe(un)e ™ a0
1

i

1 .
()3 — = [y (uo)e™ 172 —mFy ge(m)

apply the result from previous proposition [3.21] and note

Fr (uotn) = —Fy, i (us)
8



we get
(—iF} 1 (m)) = —[m|Om(f) + / IR (ag)dt
1
- ;[Ff,K(UG)]gf}

+ (-1 Fy, (1)

+{Fy (1)

1
- 2[Ff7,K(U9)]8t}
the expressions within {} are zero by Harish-Chandra jump relation, hecne the result.

Since FJQ x 1s continuous at 0 = 0, we have

QW(%F}’K(UO))O:O = Z(%F}K(m)/)\

m

by the limit formula [3.16
1
(1) =—mf(1)

hence by proposition [3.22] we get

—2m?f(1) = Z(%F}K(m)?

m

= —llon(f)+ [ ey (a)e

0
We can separate the cases f = % f,

Proposition 3.23. For f = f,, we have

(3.1) 25 1(1) = Y lmlon(f)+ 5 [ utanhmn/2)- Tosu(

m odd

Proof. For f = f,, f+ (=1)™"'f, =0 for m even and 2f for m odd.
we have

2w (1) = Y Imlon(n -2 Y | eI | (a)dt

m odd modd
o t
= Z MmOy, (f) *2/ WF},L(%)# dt
m odd >

For f = f,, we have
oo . 1 .
/ Ff7L(at)€“Ltdt = §Ff7L(O, m)

We now apply the Plancherel formula over R to the last term,

d T
) () = @tanh7

for @(p) = 75 u(t)e’™ dt. We get
e t , 1 [~x T f
/;OO me7L(at)/t dt = 7% [m §tanh(7)§T07“,‘<f)d‘LL
remember that Tp;, = Ty —s,, put all things together, we get
2 I TH
2’ f(1) = Y |mlOm(f) + = ptanh (=) - To,ip (f)dps
0

2
m odd



For f = —f,, we have

(3.2) 2’ f(1) = Y |m|@m(f)+;/Oooucoth(gﬂ)TLm(f)du

m even
Combining equations (3.1)) and (3.2)) together, we get
Theorem 3.24. (Plancherel formula) Let the distribution characters be computed with respect to the Rie-
mannian Haar measure d G, then for all f € C°(Q)

2771 = 3 0.1 +5 | " tanh(mf2) - To () du + / " i coth(mp/2) - Than(F) di

m#0
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