PLANCHEREL FORMULA FOR $SL_2(\mathbb{R})$

RUI CHEN

Contents

1.	Introduction	1
2.	Plancherel formula for $SL_2(\mathbb{C})$	1
3.	Plancherel formula for $SL_2(\mathbb{R})$	4
3.1	. Unitary representations of $SL_2(\mathbb{R})$ and their characters	4
3.2	. Orbital integrals	5
3.3	. Proof of Plancherel formula	8

1. INTRODUCTION

This is a study note for Plancherel formula for $SL_2(\mathbb{R})$ following Varadarajan's book.

2. Plancherel formula for $SL_2(\mathbb{C})$

For $G = SL_2(\mathbb{C})$, let's denote H the maximal diagonal torus, we have a map $\hat{H} \to Ch(G)$ and the fibers are precisely the orbits for Weyl group, then the Plancherel formula becomes

$$f(1) = \int_{\hat{H}} \hat{f}(\chi) \mu(\chi) \ d\chi$$

where μ is a Weyl group invariant nonnegative continuous function. An explicit formula for μ together with the explicit formula for Θ_{χ} will be a complete and far-reaching generalization of the compact theory.

We will introduce the orbital integrals on G and its Lie algebra. Let H be the diagonal matrices and $\mathfrak{h} \subset \mathfrak{g}$ its Lie algebra, let $\mathfrak{h}' \subset \mathfrak{h}$ be the elements with distinct diagonal entries.

For V an Euclidean space, we will denote $S_0(V)$ the space of linear functions that

$$\sup_{v \in V} (1 + ||v||^2)^q |f(v)| < \infty$$

 $\mathcal{S}(V)$ the space of C^{∞} functions such that all derivatives are in $\mathcal{S}_0(V)$.

Definition 2.1. For $f \in S_0(\mathfrak{g})$, the orbital integral of f on \mathfrak{g} is defined as

$$\psi_f(X) = \pi(X) \int_{G/H} f(xXx^{-1}) d(G/H)$$

for $X \in \mathfrak{h}'$, here $\pi(X) = x_1 - x_2$.

We have the conjugacy map

$$\varphi: G/H \times \mathfrak{h}' \longrightarrow \mathfrak{g}', \quad xH, X \mapsto xXx^{-1}$$

 φ is proper and all its fibers have cardinality 2, we have the following formula

$$\varphi^*\omega_{\mathfrak{g}} = \pm |\pi(X)|^4 d(G/H) d\mathfrak{h}$$

We have the following Lie algebra version of the Weyl integration formula

Lemma 2.2. For all $f \in S_0(\mathfrak{g})$

$$\int_{\mathfrak{g}} f d\mathfrak{g} = \frac{1}{2} \int_{\mathfrak{h}'} |\pi(X)|^2 \psi_f(X) \ d\mathfrak{h}$$

Date: February 2024.

For any $g \in \mathcal{S}(\mathfrak{g})$, we can define the Fourier transform

$$\hat{\mathfrak{g}}(Y) = \int_{\mathfrak{g}} g(Z) e^{i\langle Y, Z \rangle} d\mathfrak{g}(Z)$$

we can also define Fourier transform on ${\mathfrak h}$

$$\hat{h}(Y) = \int_{\mathfrak{h}} e^{i\langle Y, Z \rangle} h(Z) \ d\mathfrak{h}(Z)$$

Proposition 2.3. We have the following

$$\psi_{\hat{f}}(X) = (2\pi)\hat{\psi}_f(X)$$

We can introduce a differential operator Δ on $\mathcal{S}(\mathfrak{g})$ and it satisfies

$$(-1)(\Delta\overline{\Delta}u)(Y) = |\pi(Y)|^2\hat{u}(Y)$$

Theorem 2.4. (limit formula for \mathfrak{g}) Let

$$\psi_f(X) = |\pi(X)|^2 \int_{G/H} f(xXx^{-1})d(G/H)$$

 $X \in \mathfrak{h}'$, then for all $f \in \mathcal{S}(G)$

$$f(0) = \frac{(-1)^{2(2-1)/2}}{(2\pi)^{2(2-1)} \cdot 2!} (\Delta \overline{\Delta} \psi_f)(0)$$

for $X \in \mathfrak{h}'$.

Proof. We have for $f \in \mathcal{S}(\mathfrak{g})$

$$\begin{split} f(0) &= \frac{1}{(2\pi)^{2(2^2-1)}} \int \hat{f} \, d\mathfrak{g} \\ &= \frac{1}{(2\pi)^{2(2^2-1)} 2!} \int |\pi|^2 \psi_{\hat{f}} \, d\mathfrak{h} \\ &= \frac{1}{(2\pi)^{2(2-1)+2^2-2} \cdot 2!} \int |\pi|^2 \hat{\psi}_f \, d\mathfrak{h} \\ &= \frac{1}{(2\pi)^{2(2-1)+2^2-2} \cdot 2!} \int (\Delta \overline{\Delta} \psi_f) \, d\mathfrak{h} \\ &= \frac{(-1)^{2(2-1)/2}}{(2\pi)^{2^2-2} \cdot 2!} (\Delta \overline{\Delta} \psi_f)(0) \end{split}$$

where we used the Weyl integration formula 2.2, the relation between the Fourier transform on \mathfrak{g} and \mathfrak{h} 2.3.

Proposition 2.5. We define $\mathfrak{g}(\epsilon) = \{u \in \mathfrak{g} \mid |\lambda| < \epsilon \text{ for all eigenvalues } \lambda \text{ of } u\}$, $G(\epsilon) = \{z \in G \mid |\lambda| < \epsilon \text{ for all eigenvalues } \lambda \text{ of } z - 1\}$, then $\mathfrak{g}(\epsilon)$ (resp. $G(\epsilon)$) form a basis for the family of invariant open neighborhoods of 0 in \mathfrak{g} (resp. 1) in G, and if $\epsilon > 0$ is sufficiently small, exp is a diffeomorphism of $\mathfrak{g}(\epsilon)$ onto an invariant open neighborhood of 1 in G.

We can recover f(1) from $F_f(1)$

Theorem 2.6. Define F_f by

$$F_f(h) = |\Delta(h)|^2 \int_{G/H} f(xhx^{-1}) \ d(G/H)$$

where $dG = d\mathfrak{g}$, $dH = d\mathfrak{h}$ then

$$f(1) = \frac{(-1)^{2(2-1)/2}}{(2\pi)^{2^2-2} \cdot 2!} (\Delta \overline{\Delta} F_f)(1)$$

Proof. We can find $j \in C^{\infty}(G)$, for sufficiently small ϵ , we have $jf \in C_c^{\infty}(G)$, $\operatorname{supp} jf \subset \exp(\mathfrak{g}(\epsilon))$, jf = fin an invariant neighborhood of 1. We set $g(Z) = f(\exp Z)$, then $g \in C_c^{\infty}(\mathfrak{g})$, for $X \in \mathfrak{g}(\epsilon) \cap \mathfrak{h}'$, $h = \exp X \in H' \cap \exp(\mathfrak{g}(\epsilon))$, for such X

$$F_f(\exp X) = |\Delta(\exp X)|^2 \int_{G/H} f(x \exp X x^{-1}) d(G/H) = |\omega(X)|^2 \psi_{\mathfrak{g}}(X)$$

for $\omega(X) = \frac{\Delta(X)}{\pi(X)}, \ X \in \mathfrak{h}'.$

We can find an invariant entire function ω_1 on \mathfrak{g} which restricts to $\omega(X)^2$. For sufficiently small ϵ , $|\omega_1|$ is a real-analytic function, $|\omega_1|\mathfrak{g} \in C_c^{\infty}(\mathfrak{g}(\epsilon))$ for all $\mathfrak{g} \in C_c^{\infty}(\mathfrak{g}(\epsilon))$, and we have

$$F_f(\exp X) = \psi_{|\omega_1|g} X$$

for $X \in \mathfrak{h}' \cap \mathfrak{g}(\epsilon)$. Applying $\Delta \overline{\Delta}$ to both sides and let $X \to 0$, we get 2.6 from 2.4 as $|\omega_1|(0) = 1$ and

$$g(0) = \frac{(-1)^{2(2-1)/2}}{(2\pi)^{2(2-1)}2!} (\Delta \overline{\Delta} \psi_g)(0)$$

Lemma 2.7. Let μ be the function on \hat{H} given by

$$\mu_{\chi_{m_1,m_2};i\rho_1,i\rho_2} = \left[(m_1 - m_2)^2 + (\rho_1 - \rho_2)^2 \right]$$

where $\chi_{m_1,m_2;i\rho_1,i\rho_2}$ is the character

$$diag(z_1, z_2) \mapsto \prod_{j=1}^2 (z_j / |z_j|^{m_j}) |z_j|^{i\rho_j}$$

the m_i are integers and ρ_j are real numbers with $\sum m_j = 0$ and $\sum \rho_j = 0$, then for any $f \in C_c^{\infty}(H)$, we have

$$(-1)^{2(2-1)/2} (\Delta \overline{\Delta} \widehat{f})(x) = \mu(\chi) \widehat{f}(\chi)$$

Theorem 2.8. (Plancherel formula for $SL_2(\mathbb{C})$) For any character χ of H and let T_{χ} be the distribution character of the principal series L_{χ} , computed with respect to the Haar measure $dG = d\mathfrak{g}$, let $d\chi$ be the measure on \hat{H} , then for any $f \in \hat{H}$, we have

$$f(1) = \frac{1}{(2\pi)^{2^2 - 2} 2!} \int_{\hat{H}} T_{\chi}(f) \mu(\chi) \ d\chi$$

where

$$\mu_{\chi_{m_1,m_2};i\rho_1,i\rho_2} = \left[(m_1 - m_2)^2 + (\rho_1 - \rho_2)^2 \right]$$

Proof. We have by theorem 2.6,

$$f(1) = \frac{(-1)^{2(2-1)/2}}{(2\pi)^{2^2-2} \cdot 2!} (\Delta \overline{\Delta} F_f)(1)$$

= $\frac{(-1)^{2(2-1)/2}}{(2\pi)^{2^2-2} \cdot 2!} \int_{\hat{H}} (\Delta \overline{\Delta} F_f)(\chi) d\chi$
= $\frac{(-1)^{2(2-1)/2}}{(2\pi)^{2^2-2} \cdot 2!} \int_{\hat{H}} \hat{F}_f(\chi) \mu(\chi) d\chi$
= $\frac{(-1)^{2(2-1)/2}}{(2\pi)^{2^2-2} \cdot 2!} \int_{\hat{H}} T_{\chi}(f) \mu(\chi) d\chi$

The key ingredient of this method is that *there is a single conjugacy class of Cartan subgroups*. In the general case, where there are several conjugacy classes of Cartan subgroups, the proof of the Plancherel formula becomes very difficult.

3. Plancherel formula for $SL_2(\mathbb{R})$

3.1. Unitary representations of $SL_2(\mathbb{R})$ and their characters. Let $G = SL_2, K = SO_2 = \{u_{\theta} =$ $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ } the maximal compact, B = MAN the Levy-Langlands decomposition, $M = \{1, \gamma\}$, $\gamma = -\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}, A = \{a_t = \begin{pmatrix} e^t & \\ & e^{-t} \end{pmatrix}\}, H = MA.$

Definition 3.1. A Cartan subgroup is the group of real points of a maximal torus of $G_{\mathbb{C}}$ defined over \mathbb{R} . They are precisely the centralizers of the regular elements.

The principal series of G are $\pi_{\epsilon,\lambda} = \operatorname{Ind}_B^G \chi$ with $\chi = (\epsilon, \lambda), \ \epsilon = 0, 1 \in \hat{M}, \ \lambda \in \mathbb{C} = \hat{A}$

 $\chi_{\epsilon,\rho}$: diag $(a, a^{-1}) \mapsto \operatorname{sign}(a)^{\epsilon} |a|^{\rho}$

We denote $\hat{\bullet}$ the abelian Fourier transform on H = MA, then

Theorem 3.2. Let χ be any character of H, $\chi = (\epsilon, \eta)$, for any $f \in C_c^{\infty}(G)$, we have

$$T_{\chi}(f) = \hat{F}_{f,H}(\chi)$$

here

$$F_{f,H}(h) := |\Delta(h)|_{\mathbb{R}} \int_{G/H} f(xhx^{-1}) d\dot{x}$$

here $\Delta(diag(a, a^{-1})) = |a - a^{-1}|.$

We denote G'_H as all $x \in G$ with distinct eigenvalues in \mathbb{R} . We have the following explicit formula for T_{χ}

Theorem 3.3. Let χ be a quasicharacter of H, then there is a unique invariant function θ_{χ} on G which is zero outside G'_H and coincides with

$$(\sum_{\omega \in W} \chi^{\omega}) / \ |\Delta|_{\mathbb{R}}$$

on H', locally integrable on G and is the character of the principal series π_{χ}

$$T_{\chi}(f) = \int_{G} \theta_{\chi} f \, dx$$

Proof. We omit the proof for the existence of θ_{χ} with desired property, we show that θ_{χ} is the character of $\pi_{\chi} = \operatorname{ind}_{B}^{G} \chi.$

Since $\tilde{\theta}_{\chi}$ is outside G'_H , from Weyl integration formula

$$\int_{G'_H} \theta_{\chi} f \, dx = \frac{1}{2} \int \int_{G/H \times H'} \theta_{\chi}(xhx^{-1}) f(xhx^{-1}) |\Delta(h)|_{\mathbb{R}}^2 \, dxdh$$

use $F_{\theta_{\chi}f,H} = |\Delta(h)|_{\mathbb{R}} \int_{G/H} \theta_{\chi} f(xhx^{-1}) dx$, we have

$$\int_{G} \theta_{\chi} f \, dx = \frac{1}{2} \int_{H} |\Delta|_{\mathbb{R}} F_{\theta_{\chi} f, H} \, dh$$
$$= \frac{1}{2} \int_{H} (\sum_{\omega} \chi^{\omega}) F_{f, H} \, dh$$
$$= \int F_{\chi, H} \chi \, dh$$
$$= \hat{F}_{f, H}(\chi)$$
$$= T_{\chi}(f)$$

here we used that $\theta_{\chi} = \frac{\sum_{\omega} \chi^{\omega}}{|\Delta|_{\mathbb{R}}}$ on G'_{H} and $F_{\theta_{\chi}f,H}(h) = \theta_{\chi}(h)F_{f,H}(h)$.

More explicitly, we have

$$\theta_{\chi}(\operatorname{diag}(a, a^{-1})) = \frac{\chi(a) + \chi(a^{-1})}{|a - a^{-1}|}$$

We also have the character formula for discrete series-the unitary representations with matrix coefficients square-integrable on G

Theorem 3.4. Let's denote $\chi_n : u_\theta \mapsto e^{in\theta}$ the characters of K, there is a discrete series representation associated with χ_n for $n \neq 0$ and its character Θ_{χ} is a locally integrable function with the following formula

$$\Theta_n(u_{\theta}) = -sgn(n) \frac{e^{in\theta}}{e^{i\theta} - e^{-i\theta}}, \ (\theta \neq 0, \pi$$
$$\Theta_n(diag(a, a^{-1})) = sgn(a) \frac{a^{-|n|}}{|a - a^{-1}|} \ (|a| > 1)$$

These formula obtained by Harish-Chandra, strongly suggested that the discrete series representations associated with the compact torus K in the same way as the principal series associated with H the split torus.

3.2. Orbital integrals.

3.2.1. Orbital integrals for hyperbolic elements.

Definition 3.5. For *L* the Cartan subgroup, we define the orbital integral

$$F_{f,L}(ma_t) := \frac{1}{2} |e^t - e^{-t}| \int_{G/A} f(xma_t x^{-1}) d(G/A)$$

then use $dG = \frac{1}{2}e^{2t}d\theta ds dt$, we can show

$$F_{f,L}(a_t) = \frac{1}{4}e^t \int \overline{f}(a_t n_s) ds$$

for $\overline{f}(x) = \int f(u_{\theta}xu_{-\theta})d\theta$, hence $f \mapsto F_{f,L}$ extends to a continuous map of $C_c^{\infty}(G) \to C_c^{\infty}(L)$. Letting $t \to 0\pm$, and note $F_{f,L}$ is an even function, we obtain

Theorem 3.6. We have

• $F_{f,L}(1) = \frac{1}{4} \int_{-\infty}^{\infty} \overline{f}(n_s) ds$ • $F'_{f,L}(1) = 0.$

We can also define the orbital integral for Lie algebra.

Definition 3.7. We define

$$\psi_{f,\mathfrak{a}}(tH) = 2|t| \int_{G/L} f(x(tH)x^{-1})d(G/L)$$

for $t \neq 0$.

We have the Fourier transform on \mathfrak{g} and \mathfrak{h}

Definition 3.8. For $g \in \mathcal{S}(\mathfrak{g})$ and $h \in \mathcal{S}(\mathfrak{a})$, we define

$$\begin{split} \hat{g}(u) &= \int_{\mathfrak{g}} g(v) e^{i \langle u, v \rangle} d\mathfrak{g} \\ \hat{h}(u) &= \int_{\mathfrak{a}} h(v) e^{i \langle u, v \rangle} d\mathfrak{a} \end{split}$$

where $\langle u, v \rangle = \frac{1}{2} \operatorname{tr}(uv)$.

Theorem 3.9. The map $f \to \psi_{f,\mathfrak{a}}$ from $\mathcal{S}(\mathfrak{g})$ to $\mathcal{S}(\mathfrak{a})$ is continuous and

- ψ_{f,a}(0) = ¹/₄ ∫[∞]_{-∞} f(sX)ds and ψ'_{f,a}(0) = 0.
 ψ_{f,a}(tH) = 2πψ̂_{f,a}(tH).

Finally, similar to the complex group case, $F_{f,L}$ and $f_{f,\mathfrak{a}}$ are connected by exponential map, and for sufficiently small t, we have

$$F_{f,L}(a_t) = \left|\frac{e^t - e^{-t}}{2t}\right| \psi_{g,\mathfrak{a}}(tH)$$

for $g = f \circ \exp$.

3.2.2. Orbital integrals for elliptic elements. We introduce $\Delta(u_{\theta}) = e^{i\theta} - e^{-i\theta}$.

Definition 3.10. We define the orbital integral for elliptic elements to be

$$F_{f,K}(u_{\theta}) = \Delta(u_{\theta}) \int_{G/K} f(xu_{\theta}x^{-1}) d(G/K)$$

we note that $F_{f,K}$ is not continuous at 1.

Definition 3.11. We define the orbital integral for Lie algebra as

$$\psi_{\mathfrak{g},\mathfrak{k}}(\theta(X-Y)) = 2i\theta \int_{G/K} g(\theta x(X-Y)x^{-1})d(G/K)$$

we have the following formula for $\psi_{g,\mathfrak{k}}$

$$\psi_{g,\mathfrak{k}}(\theta(X-Y)) = \frac{1}{2\pi} i\theta \int \int \int_{0 \le \theta < 2\pi, \ t > 0} g(\theta(X-Y)^{u_{\theta_1}a_t}) \sinh 2t \ d\theta_1 \ d\theta_2 \ dt$$
$$= \frac{i\theta}{2} \int_0^\infty \overline{g}(\theta(e^{2t}X - e^{-2t}Y))(e^{2t} - e^{-2t}) \ dt$$

Proposition 3.12. If $E \subset K'$ is a compact set, then the map

 $f \mapsto F_{f,K}|_E$

is a continuous map from $C_c^{\infty}(G)$ to $C_c^{\infty}(E)$.

For all small $\theta \neq 0$, we have

$$F_{f,K}(u_{\theta}) = \frac{(e^{i\theta} - e^{-i\theta})}{2i\theta} \psi_{g,\mathfrak{e}}(\theta(X - Y))$$

where $g = f \circ exp$.

The problem now is to investigate the bahaviour of $F_{f,K}$ and its derivatives near 1 and relate this to $F_{f,L}$, this comes down to the relation at the Lie algebra level.

3.2.3. Some integration formulas.

Proposition 3.13. If we denote $\hat{\bullet}$ the Fourier transform on L with respect to dL = dMdt, for $T_{\epsilon,\lambda}$ the characters of $\pi_{\epsilon,\lambda}$, we have

$$T_{\epsilon,\lambda}(f) = \hat{F}_{f,L}(\epsilon,\lambda)$$

for $f \in C_c^{\infty}(G)$

We denote G_{ell} , G_{hyp} the open invariant set z of G such that |tr(z)| < 2 (resp. |tr(z)| > 2). Then

$$G' = G_{\text{ell}} \sqcup G_{\text{hyp}}$$

we have maps

$$\varphi_{\text{ell}}: G/K \times K' \to G_{\text{ell}}, \ \varphi_{\text{hyp}}: G/L \times L' \to G_{\text{hyp}}$$

and

$$\varphi_{\text{ell}}^* dG = |e^{i\theta} - e^{-i\theta}|^2 dG/K \ d\theta$$
$$\varphi_{\text{hyp}}^* dG = |e^t - e^{-t}|^2 G/L \ dL$$

Proposition 3.14. (Harish-Chandra integration formula) If f is a Borel function on G, then $f \in L^1(G)$ if and only if $F_{|f|,K}$ and $F_{|f|,L}$ exist almost everywhere on B and L respectively and

$$\int_{K} |\Delta(u_{\theta})| F_{|f|,K}(u_{\theta}) d\theta < \infty, \ \int_{L} |e^{t} - e^{-t}| F_{|f|,L} dL < \infty$$

Then we have

$$\int_{G} f \ dG = -\int_{K} \Delta(u_{\theta}) F_{f,K}(u_{\theta}) d\theta + \int_{\mathbb{R}} |e^{t} - e^{-t}| F_{h,L}(a_{t}) \ dt$$

where $h = (f + f_{\gamma})/2$.

We have the following lemma

Lemma 3.15. Fix $u \in C_c^{\infty}(\mathbb{R}^2)$ and

$$U(\theta) = \theta \int_0^\infty u(\theta e^{2t}, \theta e^{-2t})(e^{2t} - e^{-2t}) \, dt, \ \theta \neq 0$$

then

- U(0±) and d/dθU(0±) exists.
 d/dθU is continuous at θ = 0 and d/dθU(0) = -u(0,0).
 U(0±) = ±1/2 ∫_0^∞ u(±s,0) ds.

we can apply this lemma to

$$\psi_{g,\mathfrak{k}}(\theta(X-Y)) = \frac{i\theta}{2} \int_0^\infty \overline{g}(\theta(e^{2t}X - e^{-2t}Y))(e^{2t} - e^{-2t}) dt$$

for $\overline{g} = \int g^{u_{\theta}} d\theta$.

Theorem 3.16. (limit formula) We have

• For all $f \in C_c^{\infty}(G)$, $F'_{f,K}(u_{\theta}) = \frac{d}{d\theta}F_{f,K}(u_{\theta})$ is continuous at $\theta = 0$ and

$$\frac{1}{i}F'_{f,K}(1) = -\pi f(1)$$

• For all $g \in \mathcal{S}(\mathfrak{g})$, $\frac{d}{d\theta} \psi_{\mathfrak{g},\mathfrak{k}}(\theta(X-Y))$ is continuous at $\theta = 0$ and

$$\frac{1}{i}(\frac{d}{d\theta}\psi_{\psi_{\mathfrak{g},\mathfrak{k}}})(0) = -\pi g(0)$$

The orbital integral $F_{f,K}(u_{\theta})$ is not continuous at $\theta = 0$ and the jump at $\theta = 0$ is related to the hyperbolic orbital integral $F_{f,L}(1)$.

Theorem 3.17. (Harish-Chandra jump relation) For all $f \in C_c^{\infty}(G)$

$$\left[\frac{1}{i}F_{f,K}(u_{\theta})\right]_{\theta=0^{-}}^{\theta=0^{+}} = F_{f,L}(1)$$

For all $g \in \mathcal{S}(\mathfrak{g})$

$$\left[\frac{1}{i}\psi_{g,\mathfrak{k}}(\theta(X-Y))\right]_{\theta=0^{-}}^{\theta=0^{+}}=\psi_{\mathfrak{g},\mathfrak{a}}(0)$$

Proof. We only need to prove this at the Lie algebra level, this follows from

$$\psi_{g,\mathfrak{k}}(0\pm) = \pm \frac{i}{4} \int_0^\infty \overline{g}(\pm sX) \ ds$$

and

$$\psi_{g,\mathfrak{a}}(0) = \frac{1}{4} \int_{-\infty}^{\infty} \overline{g}(sX) \ ds$$

hence

$$\frac{1}{i}\psi_{g,\mathfrak{k}}(0+) - \frac{1}{i}\psi_{g,\mathfrak{k}}(0-) = \frac{1}{4}\int_{-\infty}^{\infty}\overline{g}(sX) = \psi_{g,\mathfrak{a}}(0)$$

Proposition 3.18. For all $f \in C_c^{\infty}(G)$, we have

$$\int \Theta_m f dG = sgn(m) \int e^{im\theta} F_{f,K}(u_\theta) d\theta + \int_0^\infty e^{-|m|t} F_{h,L}(a_t) dt$$

Proof. By the Harish-Chandra integral formula 3.14 and the character formula for discrete series 3.4, we obtain

$$\int_{G} \Theta_{m} f dG = \operatorname{sgn}(m) \int e^{im\theta} F_{f,K}(u_{\theta}) d\theta + \int_{0}^{\infty} e^{-|m|t} F_{h,L}(a_{t}) dt$$

Corollary 3.19. For Θ_m characters of π_m , we have

$$\int_{G} \Theta_m \Omega f dG = m^2 \int_{G} \Theta_m f dG$$

The boundary terms at $\theta = 0, \pi, t = 0$ gets cancelled because of the limit formula and jump relations.

3.3. Proof of Plancherel formula. Recall that we have characters Θ_m , $T_{\epsilon,\lambda}$, $\epsilon = 0, 1$ and $\lambda \in i\mathbb{R}$.

Lemma 3.20. For any integer $r \ge 1$ there is a continuous seminorm μ on $C_c^{\infty}(G)$ such that

$$\begin{aligned} |\Theta_m(f)| &\leq m^{-2}\mu(f) \\ |T_{\epsilon,\lambda}(f)| &\leq (1+|\lambda|^2)^{-r}\mu(f) \end{aligned}$$

for all $f \in C_c^{\infty}(G)$ and $m \neq 0$, all $\lambda \in i\mathbb{R}$.

This lemma assures the convergence of the series and integrals that we shall encounter. Put

$$\hat{F}_{f,K}(m) = \int F_{f,K}(u_{\theta})e^{im\theta}d\theta$$

Proposition 3.21. For all $f \in C_c^{\infty}(G)$, we have

$$\int_{G} \Theta_m f \ dG = sgn(m) \int e^{im\theta} F_{f,K}(u_\theta) \ d\theta + \int_0^\infty e^{-|m|t} F_{h,L}(a_t) dt$$

here $h = f + (-1)^{m-1} f_{\gamma}$.

Proof. From proposition 3.18, we have

$$\hat{F}_{f,K}(m) = \operatorname{sgn}(m)\Theta_m(f) - \operatorname{sgn}(m)\int_0^\infty e^{-|m|t}F_{h,L}(a_t)dt$$

use integration by part to $e^{-|m|t}F_{h,L}$, we get the result.

We can now calculate the Fourier transform of $F'_{f,K}$

Proposition 3.22. For all $f \in C_c^{\infty}(G)$, $m \in \mathbb{Z}$ writing ' for $d/d\theta$ and d/dt, then we have

$$(-iF'_{f,K}(m)) = -|m|\Theta_m(f) + \int_0^\infty e^{-|m|t} F'_{h,L}(a_t) dt$$

Proof. We have

$$(-iF'_{f,K}(m)) = -i \int F'_{f,K}(u_{\theta})e^{im\theta}d\theta$$

= $-\frac{1}{i}[F_{f,K}(u_{\theta})]^{0+}_{0-} - \frac{1}{i}[F_{f,K}(u_{\theta})e^{im\theta}]^{\pi^+}_{\pi^-} - m\hat{F}_{f,K}(m)$

apply the result from previous proposition 3.21, and note

$$F_{f,K}(u_{\theta+\pi}) = -F_{f_{\gamma},K}(u_{\theta})$$

we get

$$\begin{split} (-iF'_{f,K}(m)) &\widehat{} = -|m|\Theta_m(f) + \int_0^\infty e^{-|m|t} F'_{h,L}(a_t) dt \\ &+ \{F_{f,L}(1) - \frac{1}{i} [F_{f,K}(u_\theta)]_{0-}^{0+}\} \\ &+ (-1)^{m-1} \{F_{f_\gamma,L}(1) - \frac{1}{i} [F_{f_\gamma,K}(u_\theta)]_{0-}^{0+}\} \end{split}$$

the expressions within {} are zero by Harish-Chandra jump relation, hece the result.

Since $F'_{f,K}$ is continuous at $\theta = 0$, we have

$$2\pi (\frac{1}{i}F'_{f,K}(u_{\theta}))_{\theta=0} = \sum_{m} (\frac{1}{i}F'_{f,K}(m))$$

by the limit formula 3.16

$$\frac{1}{i}F'_{f,K}(1) = -\pi f(1)$$

hence by proposition 3.22, we get

$$-2\pi^2 f(1) = \sum_m (\frac{1}{i} F'_{f,K}(m))$$

= $-|m|\Theta_m(f) + \int_0^\infty e^{-|m|t} F'_{h,L}(a_t) dt$

We can separate the cases $f=\pm f_\gamma$

Proposition 3.23. For $f = f_{\gamma}$, we have

(3.1)
$$2\pi^2 f(1) = \sum_{m \ odd} |m| \Theta_m(f) + \frac{1}{2} \int_0^\infty \mu tanh(\pi \mu/2) \cdot T_{0,i\mu}(f) d\mu$$

Proof. For $f = f_{\gamma}$, $f + (-1)^{m-1} f_{\gamma} = 0$ for m even and 2f for m odd. we have

$$2\pi^{2} f(1) = \sum_{m \text{ odd}} |m| \Theta_{m}(f) - 2 \sum_{m \text{ odd}} \int_{0}^{\infty} e^{-|m|t} F'_{f,L}(a_{t}) dt$$
$$= \sum_{m \text{ odd}} |m| \Theta_{m}(f) - 2 \int_{-\infty}^{\infty} \frac{t}{e^{t} - e^{-t}} F'_{f,L}(a_{t})/t \ dt$$

For $f = f_{\gamma}$, we have

$$\int_{-\infty}^{\infty} F_{f,L}(a_t) e^{i\mu t} dt = \frac{1}{2} \hat{F}_{f,L}(0, i\mu)$$

We now apply the Plancherel formula over \mathbb{R} to the last term,

$$(\frac{t}{e^t - e^{-t}}\tilde{)}(\mu) = \frac{d}{d\mu} \tanh\frac{\pi\mu}{2}$$

for $\tilde{u}(\mu) = \int_{-\infty}^{\infty} u(t)e^{i\mu t} dt$. We get

$$\int_{-\infty}^{\infty} \frac{t}{e^t - e^{-t}} F'_{f,L}(a_t)/t \ dt = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\pi}{2} \tanh(\frac{\pi\mu}{2}) \frac{\mu}{2} T_{0,i\mu}(f) d\mu$$

remember that $T_{0,i\mu} = T_{0,-i\mu}$, put all things together, we get

$$2\pi^2 f(1) = \sum_{m \text{ odd}} |m| \Theta_m(f) + \frac{1}{2} \int_0^\infty \mu \tanh(\frac{\pi\mu}{2}) \cdot T_{0,i\mu}(f) d\mu$$

For $f = -f_{\gamma}$, we have

(3.2)
$$2\pi^2 f(1) = \sum_{m \text{ even}} |m| \Theta_m(f) + \frac{1}{2} \int_0^\infty \mu \coth(\frac{\pi\mu}{2}) T_{1,i\mu}(f) d\mu$$

Combining equations (3.1) and (3.2) together, we get

Theorem 3.24. (Plancherel formula) Let the distribution characters be computed with respect to the Riemannian Haar measure d G, then for all $f \in C_c^{\infty}(G)$

$$2\pi^2 f(1) = \sum_{m \neq 0} \Theta_m(f) + \frac{1}{2} \int_0^\infty \mu \ tanh(\pi \mu/2) \cdot T_{0,i\mu}(f) \ d\mu + \frac{1}{2} \int_0^\infty \mu \ coth(\pi \mu/2) \cdot T_{1,i\mu}(f) \ d\mu$$