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1 Introduction
This is a note written for perverse sheaves, I mainly follow the note by Losev, and most of the
background materials are taken from Achar’s book [1].

2 Triangulated category
We discuss the derived category of chain complexes as an example of triangulated category.

Definition 2.1. Let T be an additive category equipped with an automorphism [1] : T → T ,
the shift functor and a collection of diagrams

X
f // Y

g // Z
h // X[1]

The category T will be called an triangulated category if a list of axioms hold.

Definition 2.2. A cone of a morphism f : X → Y is any member of the isomorphism class of
objects Z such that there is a distinguished triangle X → Y → Z → X[1].

Definition 2.3. For A an abelian category, an additive functor F : T → A will be called a
cohomological functor if it sends distinguished triangles in T to long exact sequences in A .

Definition 2.4. For T and T ′ two triangulated categories, an additive functor F : T → T ′ will
be called a triangulated functor, if it commutes with shift functors and it sends distinguished
triangles to distinguished triangles.

Now we use the category of chain complexes as an example to discuss how to build trangulated
categories from additive and abelian categories.

Definition 2.5. For A an additive category, we can define Ch(A ) and K(A ), the category of
chain complexes and the homotopy category of A .

Definition 2.6. Given a chain complex A = (Ai, diA)i∈Z, A[1] will be the chain complex given
by (A[1])i = Ai+1 with differentials

diA[1] = −di+1
A : (A[1])i → (A[1])i+1

Definition 2.7. Let f : A → B be a chain map, we can define the chain-map cone ch(f) to be the

complex whose terms are ch(f)i = Ai+1⊕Bi, and differential is given by dich(f) =

(
−di+1

A

f i+1 diB

)
.

there are obvious chain maps B → ch(f) and ch(f) → A[1].
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Definition 2.8. A diagram X → Y → Z → X[1] in K(A ) is called a distinguished triangle
if for some chain map f̃ : X → Y in the homotopy class of f , there is a homotopy equivalence
u : Z → ch(f) and the original diagram commute with the diagram given by the chain-map cone
for f̃ under the natural connecting homomorphisms.

Definition 2.9. The derived category D(A ) of an abelian category A is the Verdier local-
ization of K(A ) at the set of quasi-isomorphisms.

Definition 2.10. We define the truncation functors τ≤n and τ≥n

τ≤n : Ch(A ) → Ch(A ), τ≥n : Ch(A ) → Ch(A )

it is defined as

(τ≤nX)i =


0 if i > n

ker di if i = n

Xi if i < n

we have similar definition for τ≥n.

by construction, we have natural maps τ≤nX → X and X → τ≥nX.

Lemma 2.11. Let A be an abelian category

• If X ∈ D(A )≤n and Y ∈ D(A )≥n+1, then Hom(X,Y ) = 0.

• The natural functor A → D(A ) is fully faithful and its essential image is D(A )≤0 ∩
D(A )≥0.

Lemma 2.12. For any X ∈ D(A ) and n ∈ Z, there is a unique natural map δ : τ≥n+1X →
τ≤nX[1] that gives a natural distinguished triangle

τ≤nX → X → τ≥n+1X →

Proof. In Ch(A ), we have an obvious injective map τ≤nX → X and an obvious surjective map
X → τn+1X, and it factors through

X/τ≤nX → τ≥n+1X

the fancy snake lemma gives us a distinguished triangle τ≤nX → X → X/τ≤n →, we may replace
the third term by τ≥n+1X, then we get a unique natural map δ : τ≥n+1X → τ≤nX[1].

Definition 2.13. For X,Y ∈ A , the n-th extension group of X and Y is defined to be

Extn(X,Y ) = HomD(A )(X,Y [n])

Proposition 2.14. Let A be an abelian category, and let X,Y ∈ A , there is a natural bijection
between Ext1A (X,Y ) and the equivalence classes of extensions of X by Y .

For map in the one direction, for 0 → Y → Z → X → 0 an exact sequence, we get a
distinguished triangle Y → Z → X →, which gives us a map X → Y [1] ∈ Ext1A (X,Y ).

A t-structure on a trangulated category is an additional structure that allows one to recover
the abelian subcategory (the heart) inside, in particular, recovering the abelian category inside
the derived category.

Definition 2.15. Let T be a triangulated category, and let (T ≤0,T ≥0) be a pair of strictly
full subcategories, for n ∈ Z, we let

T ≤n = T ≤0[−n] and T ≥n = T ≥0[−n]

We say that the pair (T ≤0,T ≥0) is a t-structure if the following conditions hold:
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• T ≤−1 ⊂ T ≤0 and T ≥0 ⊂ T ≥−1.

• If A ∈ T ≤−1 and B ∈ T ≥0, then Hom(A,B) = 0.

• For any C ∈ T , there is a distinguished triangle A → C → B →+1 with A ∈ T ≤−1 and
B ∈ T ≥0.

we define the heart of the t-structure (T ≤0,T ≥0) as T T ♡
:= T ≤0 ∩ T ≥0.

Example 2.16. Let A be an abelian category, and T := Db(A ). Then we set T ≤0 = {M ∈
T |Hi(M) = 0,∀i > 0} and define T ≥0 in a similar way. Then this is an obvious t-structure
with heart identified with A .

Proposition 2.17. Let (T ≤0,T ≥0) be a t-structure on T , then

• The inclusion T ≤n ↪→ T admits a right adjoint tτ≤n : T → T ≤n.

• The inclusion T ≥n ↪→ T admits a left adjoint tτ≥n : T → T ≥n.

Definition 2.18. For C ∈ T , i ∈ Z, we set

Hi(C) := τ≤0τ≥0(C[i]) ∈ T ♡

Proposition 2.19. Let (T ≤0,T ≥0) be a t-structure on T . Its heart T ♡ is an abelian category.

Proposition 2.20. Let T ♡ be the heart of a t-structure on T , and let X,Y ∈ T ♡, then there
is a bijection between Hom(X,Y [1]) and equivalence classes of extensions of X by Y , that is
Ext1T ♡(X,Y ) = Hom(X,Y [1]).

Definition 2.21. Let T1 and T2 be two trianglulated categories equipped with t-structures
(T ≤0

1 ,T ≥0
1 ) and (T ≤0

2 ,T ≥0
2 ). A triangulated functor F : T1 → T2 is said to be left t-exact if

F (T ≥0
1 ) ⊂ T ≥0

2 , and right t-exact if F (T ≤0) ⊂ T ≤0
2 . It is said to be t-exact if it is both left

and right t-exact.

We have the following lemma connects the exactness of the sequence and distinguished triangle
in the triangulated category.

Lemma 2.22. Let T ♡ be the heart of a t-structure on T , and let

X
f // Y

g // Z

be two morphisms in T ♡. The following conditions are equivalent

• The sequence

0 // X
f // Y

g // Z // 0

is a short exact sequence.

• There exists a morphism h : Z → X[1] in T , such that

X
f // Y

g // Z
h //

is a distinguished triangle.
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3 Constructible sheaves
For X,Y complex algebraic varieties and f : X → Y a smooth morphism.

Proposition 3.1. Suppose f : X → Y is smooth of relative dimension d, then we have isomor-
phism f ! ∼= f∗[2d].

Example 3.2. When Y is a point, k a field. We apply this isomorphism to constant sheaf
k ∈ Sh(pt, k), then the proposition tells us that f !k = kX [2d].

Let L be a finite rank local system on X, we have

HomD(X,k)(L , f !k) = HomD(k−mod)(f!L , k) = RΓc(L )∗

On the other hand, for L ∨ the dual local system of L , we have

HomD(X,k)(L , f∗k[2d]) = HomD(X,k)(L , kX [2d]) = RΓ(L ∨[2d])

so the proposition asserts that
RΓc(L )∗ = RΓ(L ∨[2d])

which is Hj
c (X,L ) = H2d−j(X,L ∨)∗ for j ∈ Z, which is the Poincare duality for local systems.

In other words, 3.1 is a relative version of the Poincare duality.

Definition 3.3. A partition X = ⊔k
i=0Xi is called a stratification if

• Xi are smooth connected locally closed subvarieties.

• for each i, j = 1, · · · k, we have Xi ∩Xj = Xi or ∅.

Example 3.4. For U acting on X = G/P , we get the parabolic Bruhat strtification.

Definition 3.5. Let S be a stratification of X, for a stratum Xi, let hi : Xi ↪→ X be the
inclusion. We say that

• F ∈ Sh(X, k) constructible w.r.t S, if h∗
i F is a local system of finite type.

• F ∈ Db(X, k) is called constructible w.r.t S, if H i(F ) is constructible w.r.t S for all i.

• F ∈ Db(X, k) is called constructible if it is constructible w.r.t some stratification.

Example 3.6. For the trivial stratification S, we have ShS(X, k) = Locft(X, k).

Example 3.7. For the Bruhat stratification on P1. All the strata are simply-connected, hence the
local systems are determined by the vector spaces on the stalks. Set W0 = F[1:0], W1 := F[0:1].
The restriction map from the neighborhood of 0 to the punctual neighborhood U× gives us a
transition map

φ : W0 = Γ(U,F ) −→ Γ(U×,F ) = W1

the data (W0,W1, φ) gives us the data that needed to define a finite dimensional A2 quiver
representation. In fact, we have an equivalence between ShS(X,C) and the category of finite
dimensional representations of A2 quiver.

The functors we constructed preserves the structure of the constructible derived categories.

Theorem 3.8. The following are true

• for F ∈ Db
c(X, k), we have f∗F , f!F ∈ Db

c(Y, k).

• for G ∈ Db
c(Y, k), we have f∗G , f !G ∈ Db

c(X, k).
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• for F1,F2 ∈ Db
c(X, k), we have RH om(F1,F2) ∈ Db

c(X, k).

Definition 3.9. We define the dualizing sheaf ωX to be a!Xk, where aX : X → pt.

so we have
HomDb(X,k)(F , ωX) = HomDb(k−mod)(RΓc(F ), k)

Definition 3.10. The Verdier duality functor is

D(•) := RH om(•, ωX) : Db
c(X, k) → Db

c(X, k)opp

The following theorem summarizes the properties of D

Theorem 3.11. The following claims are true:

• D is an equivalence, moreover D2 is naturally isomorphic to id.

• We have f! ◦ DX = DY ◦ f∗ and f∗ ◦ DX = DY ◦ f!.

• We have f ! ◦ DX = DY ◦ f∗ and f∗ ◦ DX = DY ◦ f !.

• We have RH om(F1,F2) = RH om(DF2,DF1).

We have the following theorem which will be useful for us to do many calculations.

Theorem 3.12. Let i ↪→ X be a closed embedding, and let j : U ↪→ X be the complementary
open embedding, then

• We have i∗ ◦ j! = 0, i! ◦ j∗ = 0, and j∗ ◦ i∗ = 0.

• For any F ∈ D+(X,C), there is a natural distinguished triangle

j!j
∗F → F → i∗i

∗F → (3.1)

• For any F ∈ D+(X,C), there is a natural distinguished triangle

i∗i
!F → F → j∗j

∗F → (3.2)

For the first statement, since i∗, j!, j
∗ and i∗ come from exact functors , the claims i∗ ◦ j! = 0

and j∗ ◦ i∗ = 0 can be checked at the level of abelian categories, and from the adjoint relations,
i! ◦ j∗ is right adjoint to j∗ ◦ i! ∼= j∗ ◦ i∗, so it also vanishes.

For the second statement, one can check that we have the short exact sequence in Sh(X,C)
by checking the exactness at stalks

0 → j!j
∗F → F → i∗i

∗F → 0

then the 2.22 gives us a distinguished triangle j!j
∗F → F → i∗i

∗F →. Note

Hom(j!j
∗F , i∗i

∗F [−1]) ∼= Hom(i∗j!j
∗F , i∗F [−1]) = 0

so the third map in the triangle is unique.
For the third statement, similarly one show that there is a short exact sequence

0 → i∗i
!F → F → j∗j

∗F → 0

and then 2.22 will give us the distinguished triangle.
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Example 3.13. For j : C× ↪→ C, we have j!C and j∗C are constructible with respect to the
Bruhat strtification C = C× ∪ {0}, we want calculate the stalks of cohomology local systems on
x ∈ C× and 0, here Fx := i∗xF , for ix : {x} ↪→ C.

From that i∗j! = 0, we see the stalk cohomology of j!C at 0 is zero. For x ∈ C, we use the
formula

Hk((j!F )x) = limx∈UH
k(U,F |U )

and we get H0((j!C)x) = C and H1((j!C)x) = 0.
For the stalks of cohomology local systems of j∗C, note we have

F = limx∈URΓ∗(U,F |U)

= limx∈URΓ∗(U ∩ C×,F |U∩C×)

where the second equality is by open base change. we get for x ∈ C× H0((j∗C)x) = C and
H1((j∗C)x) = 0, and H0((j∗C)0) = C and H1((j∗C)0) = C.

Later we will check that j!C[1] and j∗C[1] are perverse sheaves and determine their composi-
tion factors.

4 Perverse sheaves
We have the tautological t-structure (τDb

c(X, k)≤0, τDb
c(X, k)≥0) on Db

c(X, k) ( as it is the derived
category of the constructible sheaves). However this is not the best t-structure, for example, it
doesn’t behave well under the Verdier duality.

For example, if ι : Z ↪→ X is a closed inclusion of a smooth connected subvariety of X and
LZ is a finite type local system on Z, then we have D(LZ) ∼= L ∨

Z [2dimZ].
We would like to have a t-structure which is compatible with D, meaning that D sends the

≤ 0 part to ≥ 0 part. We define

pDb
c(X, k)≤0 := {F ∈ Db

c(X, k)| dim supp H i(F ) ≤ −i, ∀i ∈ Z} (4.1)
pDb

c(X, k)≥0 := {F ∈ Db
c(X, k)| dim supp H i(DF ) ≤ −i,∀i ∈ Z} (4.2)

Definition 4.1. We set

Perv(X, k) := pDb
c(X, k)≤0 ∩ pDb

c(X, k)≤0

the objects of Perv(X, k) are called Perverse sheaves.

Example 4.2. Let ι : Z ↪→ X be a closed embedding, then LZ [dim Z] ∈ Perv(X, k).

Theorem 4.3. The pair (pDb
c(X, k)≤0, pDb

c(X, k)≥0) is a t-structure, hence Perv(X, k) is an
abelian category.

Recall that there is a morphism h! → h∗, we get a morphism

pH 0(h!•) → pH 0(h∗•) (4.3)

of functors Perv(Z, k) → Perv(X, k).
For Z ⊂ X a smooth irreducible and locally closed subvariety, h : Z ↪→ X and inclusion.

Definition 4.4. The intermediate extension functor h!∗ : Perv(Z, k) → Perv(X, k) is the image
of (4.3).

For F ∈ Perv(Z), the object h!∗(F ) is the unique G ∈ Perv(X) such that

• Supp(G ) ⊂ Z.
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• G |Z ∼= F .

• G has no subs and quotients supported on Z\Z.

because of this, sometimes h!∗ is called the minimal extension.

Definition 4.5. Let Z ⊂ X be a smooth, irreducible and loally closed subvariety, h : Z ↪→ X be
an inclusion, and L a local system on Z, we define the intersection cohomology sheaf IC(Z,L )
to be h!∗(L [dimZ]).

Theorem 4.6. The following claims are true

• if L is irreducible, then IC(Z,L ) is simple in Perv(X, k).

• every simple in Perv(X, k) is isomorphic to IC(Z,L ) for some Z,L .

• we have IC(Z1,L1) ∼= IC(Z2,L2) if and only if Z1 ∩ Z2 is open in both Z1, Z2 and
L1|Z1∩Z2 = L2|Z1∩Z2 .

• We have DIC(Z,L ) = IC(Z,L ∨).

Suppose Z = X, then from RΓc ◦ DX = Dpt ◦RΓ = RΓ∗, we get

RΓc(IC(Z,L ∨)) = RΓ(IC(Z,L ))∗

this is a generalization of the Poincare duality to singular varieties.

Example 4.7. For the open embedding j : C× ↪→ C, we have the sheaves j!C[1], j∗C[1] ∈ Db
c(C).

From the calculation of the stalks, we see that j!C[1] and j∗C[1] ∈ pD≤0, and note from the
Verdier duality Dj!C[1] = j∗C[1], we see both j!C[1] and j∗C[1] are perverse sheaves.

From the distinguished triangle (4.3) apply to j : C× ↪→ C and i : {0} ↪→ C and F = C, we
get a distinguished triangle

j!C → C → C0 →

and from 2.22, we get a short exact sequence of perverse sheaves

0 → C0 → j!C[1] → C[1] → 0

Similarly, from the distinguished triangle (3.2) note i! = i∗[−2], we get a distinguished triangle

C0[−2] → C → j∗C →

by 2.22, we get the short exact sequence of perverse sheaves

0 → C[1] → j∗C[1] → C0 → 0

Note from the definition of the intersection cohomology sheaf as Im(j! → j∗), we have
IC(C×) = C[1] and IC({0}) = C0.

Example 4.8. We now describe the category PervS(P1,C), where S is the standard Bruhat
stratification. For X0 = {[1 : 0]}, X1 = A1.

Since both strata are connected, we have two simple objects L0 := i∗C, L1 := IC(X1,CX1
) =

CP1 [1]. For j : X1 ↪→ P1, we have the objects ∇1 := j∗CX1
[1], ∆1 := j!CX1

[1] which are also
perverse.

Note that for any F ∈ Db
c(P1,C),

HomDb
c(P1,C)(F , L0) = H0(F0)

∗

7



recall that H0(j∗C0) = H1(j∗C0) = 1, we get

dimHomPerv(∇1, L0) = dimExt1Perv(∇1, L0) = 1

From dimExt1Perv(∇1, L0) = 1, let P0 denote the universal extension

0 −→ L0 −→ P0 −→ ∇1 −→ 0

we have dimExt1Perv(L0, L1) = dimExt1Perv(L1, L0) = 1, and from the exact triangles obtained
from j : X1 ↪→ P1, we get short exact sequences of perverse sheaves

0 −→ L1 −→ ∇1 −→ L0 −→ 0

0 −→ L0 −→ ∆1 −→ L1 −→ 0

we claim that Ext1Perv(P0, L1) = 0, equivalently, Ext1Perv(L1, P0) = 0. For this we use the
exact sequence

0 −→ L0 −→ P0 −→ ∇1 −→ 0

we consider Hom(L1, ·), the relevant terms are

Hom(L1,∇1) → Ext1(L1, L0) → Ext1(L1, P0) → Ext1(L1,∇1)

the first two spaces are C and the homomorphism between them is an isomorphism as ∇1 realizes
a nontrivial extension between L0 and L1, so the last homomorphism is injective, then we note
that Ext1(L1,∇1) = 0, and thus we have Ext1Perv(P0, L1) = 0.

There are five indecomposable perverse sheaves, up to isomorphism

IC(X1), IC(X0), j!C[1], j∗C[1], P0
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