REPRESENTATIONS OF METAPLECTIC GROUP

RUI CHEN

1. INTRODUCTION

This is a study note for the Gan-Savin paper [GS12] on the representations of the metaplectic groups, this is a local Shimura correspondence which extends the well-known result of Waldspurger.

2. WALDSPURGER'S RESULT

Let k be a non-Archimedean local field of characteristic zero with odd residual characteristic p. Let $(W, \langle -, - \rangle)$ be a symplectic vector space of dimension 2 over k with associated symplectic group Sp(W), the group Sp(W) has a unique two-fold central extension Mp(W) which is called the metaplectic group

 $1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Mp}(W) \longrightarrow \operatorname{Sp}(W) \longrightarrow 1$

Remark 2.1. For k an archimedean local field, the existence of Mp(W) follows from that the fundamental group of $SL_2(\mathbb{R})$ is \mathbb{Z} .

Let's recall Waldspurger's result in this case. By studying the theta correspondence for $Mp(W) \times O(V)$, Waldspurger showed the following result

Theorem 2.2. Fix an additive character ψ of k.

- Given any irreducible representation π of SO(V), the theta lift $\theta_{V,W,\psi}(\pi)$ of π to Mp(W) is irreducible and non-zero.
- The previous construction gives a bijection

$$\Theta_{\psi}$$
: $Irr(SO(V^+)) \cup Irr(SO(V^-)) \leftrightarrow Irr(Mp(W))$

- $\pi \in Irr(SO(V))$ is a discrete series (resp. tempered) representation if and only if $\Theta_{\psi}(\pi)$ is a discrete series (resp. tempered) representation.
- via the local Langlands correspondence for $SO(V^{\pm})$ one has a bijection

$$\mathscr{L}_{\psi}: Irr(Mp(W)) \leftrightarrow \Phi(Mp(W))$$

It is a consequence of the previous theorem that

- given $\pi \in \operatorname{Irr}(\operatorname{SO}(V))$, exactly one extension π^{ϵ} of π participates in the theta correspondence.
- given $\sigma \in Irr(Mp(W))$, σ participates in the theta correspondence with exactly one of the $O(V^+)$ or $O(V^-)$.

As a refinement of the previous statements, Waldspurger proved

Theorem 2.3. We have

• Given $\pi \in Irr(SO(V))$, π^{ϵ} participates in theta correspondence with Mp(W) if and only if

$$\epsilon = \epsilon(V) \cdot \epsilon(1/2, \pi)$$

• Given $\sigma \in Irr(Mp(W))$ σ participates in theta correspondence if and only if

$$Z_{\psi}(\sigma) = \epsilon(V) \cdot \epsilon(1/2, \Theta_{\psi}(\sigma)) = \epsilon(V) \cdot \epsilon(1/2, \mathscr{L}_{\psi}(\sigma))$$

```
Date: May 2024.
```

What Waldspurger proved is actually: If $\pi \in \operatorname{Irr}(\operatorname{SO}(V^+))$ has *L*-parameter ϕ and Jacquet-Langlands transfer $\pi' \in \operatorname{Irr}(\operatorname{SO}(V^-))$, then the *L*-packet associated to ϕ is

$$\mathscr{L}_{\psi,\phi} = \{\Theta_{\psi}(\pi), \ \Theta_{\psi}(JL(\pi))\}$$

The decomposition

$$\operatorname{Irr}(\operatorname{Mp}(W)) = \sqcup_{\psi} \mathscr{L}_{\psi,\phi}$$

is a canonical decomposition in the sense that it is independent of ψ , however the labelling of the representations in each packet by characters of the component group depends on such a choice, Waldspurger determined how the dependence varies with ψ

Theorem 2.4. For $a \in k^{\times}$, let ψ_a be the additive character given by $\psi_a(x) = \psi(ax)$ and let χ_a be the quadratic character associated to the class of $a \in k^{\times}/k^{\times 2}$ suppose

$$\mathscr{L}_{\psi}(\sigma) = (\phi, \eta) \text{ and } \mathscr{L}_{\psi_a}(\sigma) = (\phi_a, \eta_a)$$

then $\phi_a = \phi \otimes \chi_a$ and

$$\eta_a/\eta = \epsilon(1/2, \phi \otimes \chi_a) \cdot \epsilon(1/2, \phi) \cdot \chi_a(-1)$$

The purpose of the Gan-Savin paper is to extend the theorem 2.2, 2.3, 2.4 to the case of higher rank.

3. Epsilon dichotomy and local Langlands correspondence

Let k be a non-Archimedean local field of characteristic zero with odd residual characteristic p. Let $(W, \langle -, - \rangle)$ be a symplectic vector space of dimension 2n over k with associated symplectic group Sp(W), the group Sp(W) has a unique two-fold central extension Mp(W) which is called the metaplectic group

$$1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Mp}(W) \longrightarrow \operatorname{Sp}(W) \longrightarrow 1$$

Remark 3.1. For k an archimedean local field and n = 1, the existence of Mp(W) follows from that the fundamental group of $SL_2(\mathbb{R})$ is \mathbb{Z} .

In the rest of the section, we will

- obtain a local Langlands correspondence for Mp(W) and establish some of its expected properties.
- establish a result known as epsilon dichotomy, where certain local root numbers are shown to control the non-vanishing of certain theta lifts.

Remark 3.2. Let's remark that the second property is typical for theta correspondence.

Theorem 3.3. For each non-trivial additive character $\psi: k \to \mathbb{C}^{\times}$, there is a bijection

$$\Theta_{\psi} : Irr(Mp(W)) \leftrightarrow Irr(SO(V^+)) \cup Irr(SO(V^-))$$

where V^+ (resp. V^-) is the split (resp. non-split) quadratic space of discriminant 1 and dimension 2n + 1. This bijection is given by the theta correspondence with respect to ψ for the group $Mp(W) \times SO(V^{\pm})$.

Corollary 3.4. Assume the local Langlands correspondence for $SO(V^{\pm})$, then one obtains a local Langlands correspondence for Mp(W), that is a bijection

$$\mathscr{L}_{\psi} : Irr(Mp(W)) \longrightarrow \Phi(Mp(W))$$

where $\Phi(Mp(W))$ is the set of pairs (ϕ, η) such that

- $\phi: WD_k \to Sp_{2n}(\mathbb{C})$ is a 2n-dimensional symplectic representation of WD_k .
- η is an irreducible representation of the component group A_{ϕ} .

One may ask whether the local Langlands correspondence satisfies certain typical properties. We have the following result

Theorem 3.5. Suppose $\pi \in Irr(SO(V))$ and $\sigma \in Irr(Mp(W))$ correspond under Θ_{ψ} , then the following hold

(1) π is a discrete series representation if and only if σ is a discrete series representation.

(2) π is tempered if and only if σ is tempered.

(3) If π and σ are discrete series representations

$$deg(\pi) = deg(\sigma)$$

with suitable normalization of the Haar measure. (4) If π is a generic representation of $SO(V^+)$, then σ is a ψ -generic representation of Mp(W), if σ is ψ -generic and tempered, then π is generic.

Let's turn to the proof of 3.3, the key steps are the following two statements:

- given an irreducible representation π of SO(V), exactly one extension of π to $O(V) = SO(V) \times \{\pm 1\}$ has a non-zero theta lift to Mp(W).
- given an irreducible representation σ of Mp(W), σ has non-zero theta lift to O(V) for exactly one V.

Now we want to ask whether it is possible to specify which extensions of π^{\pm} participates in the theta correspondence and given a representation σ of Mp(W) to which O(V) is the theta lift of σ non-zero. We introduce the following notation

$$\epsilon(V) = \begin{cases} +1 \text{ if } V = V^+ \\ -1 \text{ if } V = V^- \end{cases}$$

the sign ϵ in π^{ϵ} encodes the central character of π^{ϵ} : $\epsilon = \pi^{\epsilon}(-1)$.

On the other hand, for an irreducible genuine representation σ of Mp(W), we can consider its central character ω_{σ} which is a genuine character of \tilde{Z} the preimage in Mp(W) of the center Z of Sp(W). Using the additive character ψ , one can define a genuine character χ_{ψ} of \tilde{Z} , we can define the central sign $z_{\psi}(\sigma)$ of σ as

$$z_{\psi}(\sigma) = \omega_{\sigma}(-1)/\chi_{\psi}(-1) \in \{\pm 1\}$$

the quotient above is independent of the choice of the preimage of $-1 \in Z$ in \tilde{Z} .

Theorem 3.6. We have the following result

• Let π be an irreducible representation of SO(V), then π^{ϵ} participates in theta correspondence with respect to ψ with Mp(W) if and only if

$$\epsilon = \epsilon(V) \cdot \epsilon(\frac{1}{2}, \pi)$$

here $\epsilon(s, \pi, \psi)$ is the standard epsilon factor defined by the doubling method. Let σ be an irreducible representation of Mp(W), then σ has non-zero theta lift with respect to ψ to O(V) if and only if the central character of σ satisfies

$$z_{\psi}(\sigma) = \epsilon(V) \cdot \epsilon(\frac{1}{2}, \sigma, \psi) = \epsilon(V) \cdot \epsilon(\frac{1}{2}, \Theta_{\psi}(\sigma))$$

Finally, we investigate how the local Langlands correspondence \mathscr{L}_{ψ} depends on ψ , for this we have to assume the local Langlands correspondence for $\mathrm{SO}(V^{\pm})$ and it satisfies certain expected properties in relation to the theory of endoscopy. To state the result, we recall $\phi : \mathrm{WD}_k \to \mathrm{Sp}_{2n}(\mathbb{C})$ is a symplectic representation of WD_k and if we write $\phi = \bigoplus_i n_i \cdot \phi_i$ as a direct sum of irreducible representations ϕ_i with some multiplicities n_i , then the component group A_{ϕ} is given by

$$A_{\phi} = \prod_{i:\phi_i \text{ symplectic}} \mathbb{Z}/2\mathbb{Z}a_i$$

so that A_{ϕ} is a vector space over $\mathbb{Z}/2\mathbb{Z}$ with a canonical basis.

We have the following theorem

Theorem 3.7. For $\sigma \in Irr(Mp(W))$ and $c \in k^{\times}$, let

$$\mathscr{L}_{\psi}(\sigma) = (\phi, \eta) \text{ and } \mathscr{L}_{\psi_c}(\sigma) = (\phi_c, \eta_c)$$

then the following hold

• $\phi_c = \phi \otimes \chi_c$ where χ_c is the quadratic character associated with $c \in k^{\times}/k^{\times 2}$ and it follows we have the canonical identification of component groups

$$A_{\phi} = A_{\phi_c} = \oplus_i \ \mathbb{Z}/2\mathbb{Z}a_i$$

so it makes sense to compare η and η_c .

• The characters η and η_c are related by

$$\eta_c(a_i)/\eta(a_i) = \epsilon(1/2,\phi_i) \cdot \epsilon(1/2,\phi_i \otimes \chi_c) \cdot \chi_c(-1)^{(\dim\phi_i)/2} \in \{\pm 1\}$$

It is interesting that the proof of this last theorem uses the Gross-Prasad conjecture for tempered representations of special orthogonal groups.

References

[GS12] Wee Teck Gan and Gordan Savin. Representations of metaplectic groups i: epsilon dichotomy and local langlands correspondence. *Compositio Mathematica*, 148(6):1655–1694, 2012.