SPHERICAL FUNCTIONS ON A GROUP OF p-ADIC TYPE

RUI CHEN

1. INTRODUCTION

This is a summary of the result of Macdonald's book [Mac]. In essence, it is an account of the theory of zonal spherical functions on the group of rational points of a simply-connected simple algebraic group defined over a *p*-adic field, relatively to a suitably chosen maximal compact group.

2. Plancherel measure

2.1. The standard case. Let \hat{T} be the character group of the discrete group T. \hat{T} is the product of ℓ circles, and may be identified with the torus A^*/L , where L is the lattice of linear forms u on A such that $u(\alpha^{\vee}) \in \mathbb{Z}$ for all $a \in \Sigma_0$. Let ds be Haar measure on the compact group \hat{T} , normalized so that the total mass of \hat{T} is 1.

We shall assume that $q_{\alpha/2} \ge 1$ for all $\alpha \in \Sigma_0$ in this section, call this the *standard case*. The exceptional case, where $q_{\alpha/2} < 1$ for some $\alpha \in \Sigma_0$ will be discussed separately.

Theorem 2.1. Assume that $q_{\alpha/2} \ge 1$ for all $a \in \Sigma_0$, then the Plancherel measure μ on the space Ω^+ of positive definite spherical functions on G relative to K is concentrated on the set $\{\omega_s : s \in \hat{T}\}$ and is given by

$$d\mu(\omega_s) = \frac{Q(q^{-1})}{|W_0|} \cdot \frac{ds}{|c(s)|^2}$$

where $|W_0|$ is the order of the Weyl group W_0 .

2.2. The exceptional case. In this section we will consider the case excluded from the considerations of 2.1, namely where $q_{\alpha/2} < 1$ for some $a \in \Sigma_0$. First of all, this will imply that $\frac{a}{2} \in \Sigma_0$ for some $a \in \Sigma_0$, so that the root system Σ_0 is not reduced. Since it is irreducible, it is must be of the type BC_{ℓ} , there is a basis of Σ_1 consists of

$$\pm e_i, \ (1 \le i \le \ell), \ \pm 2e_i, \ (1 \le i \le \ell), \ \pm e_i \pm e_j \ (1 \le i < j \le \ell)$$

and Σ_0 consists of

$$\pm 2e_i (1 \le i \le \ell), \ \pm e_i \pm e_j (1 \le i < j \le \ell)$$

We choose the set of simple roots to be

$$\Pi_0 = \{e_1 - e_2, \ e_2 - e_3, \cdots 2e_\ell\}$$

Let

$$q_0 = q_{\pm e_i \pm e_j}, \ q_1 = q_{\pm e_i}, \ q_2 = q_{\pm 2e_i}$$

so that $q_1 < 1$. Put

$$t_i = t_{2e_i} (1 \le i \le \ell)$$

If $s \in S$, put $s_i = s(t_i) \in \mathbb{C}^*$, then c(s) is the product of the factors

$$\frac{(1+q_1^{-1/2}s_i^{-1})(1-q_1^{-1/2}q_2^{-1}s_i^{-1})}{1-s_i^{-2}}$$

for $i = 1 \cdots \ell$ and the factors

$$\frac{1-q_0^{-1}s_i^{-1}s_j}{1-s_i^{-1}s_j}\cdot\frac{1-q_0^{-1}s_i^{-1}s_j^{-1}}{1-s_i^{-1}s_j^{-1}}$$

Let $\phi(s) = c(s)c(s^{-1})$.

Date: April 2025.

Define a function $\phi_J(s)$ inductively as follows

$$\phi_{\emptyset}(s) = \phi(s) = c(s)c(s^{-1})$$

also

$$\phi_J(s) = \phi_{j_1, \cdots, j_r}(s) = \lim_{s_{j_1} \to -q_0^{r-1} q_1^{1/2}} \frac{\phi_{j_2 \cdots j_r}(s)}{1 + q_0^{1-r} q_1^{-1/2} s_{j_1}}$$

The final form of the Plancherel measure will depend on how many of the numbers

$$q_1^{1/2}, q_0 q_1^{1/2}, \cdots, q_0^{\ell-1} q_1^{1/2}$$

are less then 1. So we define $\epsilon_r \ 0 \le r \le \ell$ as follows $\epsilon_0 = 1$ and

$$\epsilon_r = \begin{cases} 1 \text{ if } q_0^{r-1} q_1^{1/2} < 1 \\ 0 \text{ otherwise} \end{cases}$$

we may define

$$\phi_r(\omega_s) = \phi_J(s)$$
 if $|J| = r$

Theorem 2.2. The Plancherel measure μ on the space of positive definite spherical functions is concentrated on the sets Ω_r such that $\epsilon_r = 1$ where ϵ_r is defined as in. On Ω_r , μ is given by

$$d\mu(\omega) = \frac{Q(q^{-1})}{\omega_r} \frac{d\omega}{\phi_r(\omega)}$$

where $\omega_r = 2^{\ell-r}(\ell-r)!$ is the order of the normalizer in W_0 of any \hat{T} such that |J| = r.

2.3. Comparison with the real and complex cases. Let k be a local field, that is to say k is \mathbb{R} , \mathbb{C} or a p-adic field, and the additive group of k is self-dual. Associated canonically with k there is a meromorphic function $\gamma_k(s)$ of a complex variable s, sometimes called the gamma-function of k.

If f is any well-behaved function on k, let \hat{f} be its Fourier transform with respect to the additive group structure, since k^+ is self-dual, \hat{f} is a function on k^+ . If Re(s) > 0, define

$$\zeta(f,s) = \int_{k^{\times}} f(x) ||x||^s d^{\times} x$$

Then $\zeta(f, s)$ has a functional equation

$$\zeta(f,s) = \gamma_k(s)\zeta(\hat{f}, 1-s)$$

 $k = \mathbb{R}$: take $f(x) = e^{-2\pi |x|^2}$ (|x| the ordinary absolute value on \mathbb{C}), then again $\hat{f} = f$, we find that

$$\gamma_{\mathbb{R}}(s) = \frac{\pi^{-s/2}\Gamma(\frac{s}{2})}{\pi^{(s-1)/2}\Gamma(\frac{1-s}{2})}$$

so that

$$\gamma_{\mathbb{R}}(s)\gamma_{\mathbb{R}}(-s) = B(\frac{1}{2}, \frac{1}{2}s)B(\frac{1}{2}, -\frac{1}{2}s)$$

 $k=\mathbb{C}:$ take $f(x)=e^{-2\pi|x|^2},$ then again $\widehat{f}=f$ and we have

$$\gamma_{\mathbb{C}}(s) = \frac{(2\pi)^{-s} \Gamma(s)}{(2\pi)^{s-1} \Gamma(1-s)}$$

so that

$$\gamma_{\mathbb{C}}(s)\gamma_{\mathbb{C}}(-s) = \frac{-4\pi^2}{s^2}$$

k a p-adic field: taking f to be the characteristic function of the ring of integer of k, then we find that

$$\gamma_k(s) = d^{s-\frac{1}{2}} \frac{1-q^{s-1}}{1-q^{-s}}$$

here q is the number of elements in the residue field. In this case, we have

$$\gamma_k(s)\gamma_k(-s) = d^{-1} \frac{1 - q^{-1-s}}{1 - q^{-s}} \frac{1 - q^{-1+s}}{1 - q^s}$$

Now let G be a universal Chevalley group $G(\Sigma_0, k)$ where k is any local field. If $k = \mathbb{R}$ or \mathbb{C} , let K be the maximal compact subgroup of G. If k is p-adic, let K be the maximal compact subgroup of G.

If $k = \mathbb{R}$ or \mathbb{C} , then the zonal spherical function on G relative to K are parametrized by the \mathbb{R} -linear mappings $s : A \to \mathbb{C}$, and the Plancherel measure for the positive definite spherical functions is supported on the space of pure imaginary s. If ds is a Euclidean measure on this space, then the Harish-Chandra measure μ is of the form

$$d\mu(\omega_s) = \kappa \frac{ds}{|c(s)|^2}$$

where κ is a constant and

$$c(s) = \prod_{a \in \Sigma_0^+} B(\frac{1}{2}, \frac{1}{2}s(a^{\vee}))$$

we have

$$c(s)c(-s) = \prod_{a \in \Sigma_0} \gamma_k(s(a^{\vee}))$$

On the other hand, if k is p-adic, then we have seen the support of the Plancherel measure is the character group \hat{T} of T, to bring out the analogy with the real and complex case we shall replace the multiplicative parametrization of the spherical functions, if $s_0 \in S = \text{Hom}(T, \mathbb{C}^*)$, we define

$$s: A \longrightarrow \mathbb{C}/(\frac{2\pi i}{\mathrm{log}q})\mathbb{Z}$$

by the rule

$$s_0(t_a) = q^{-s(a^{\vee})}$$

where as before q is the number of elements in the residue field of k. Then from 2.1, the Plancherel measure μ is of the form

$$d\mu(\omega_s) = \kappa \frac{ds}{|c(s)|^2}$$

where ds is the Euclidean measure on the space of pure imaginary s, κ is a constant and

$$c(s) = \prod_{a \in \Sigma_0^+} \frac{1 - q^{-1 - s(a^{\vee})}}{1 - q^{-s(a^{\vee})}}$$

we have

$$c(s)c(-s) = \prod_{a \in \Sigma_0} \gamma_k(s(a^{\vee}))$$

so sum up

Theorem 2.3. If k is any local field and $G = G(\Sigma_0, k)$ is a universal Chevalley group, then the Plancherel measure on the space of positive definite spherical functions on G relative to the maximal compact subgroup K is of the form

$$d\mu(\omega_s) = \frac{\kappa \cdot ds}{\prod_{a \in \Sigma_0} \gamma_k(s(a^{\vee}))}$$

Also for non-split groups, there is a strong resemblance between the Plancherel measure in the real case and in the p-adic case.

In the work of Harish-Chandra, the Plancherel measure μ is given by

$$d\mu(\omega_{\lambda}) = \kappa \; \frac{d\lambda}{|c(\lambda)|^2}$$

where κ is a constant and $c(\lambda)$ is a product of beta-functions, namely

$$c(\lambda) = \prod_{b \in \Sigma_1^+} B(\frac{1}{2}m_b, \frac{1}{4}m_{b/2} + \frac{1}{2}\lambda(b^{\vee}))$$

let

$$\zeta_{\mathbb{R}}(s) = \pi^{-\frac{1}{2}s} \Gamma(\frac{1}{2}s)$$

which is the local zeta function $\zeta(f,s)$ for $f(x) = e^{-\pi x^2}$, we have

$$c(\lambda) = \kappa \prod_{b \in \Sigma_1^+} \frac{\zeta_{\mathbb{R}}(\frac{1}{2}m_{b/2} + \lambda(b^{\vee}))}{\zeta_{\mathbb{R}}(m_b + \frac{1}{2}m_{b/2} + \lambda(b^{\vee}))}$$

where κ is independent of A.

Now we turn to the case k is p-adic. If the number of elements in the residue field of k is q, then each index q_b ($b \in \Sigma_1$) is a power of q. We shall write

$$q_b = q^{m_b} \ (b \in \Sigma_1)$$

and call m_b the formal multiplicity of the root $b \in \Sigma_1$.

Theorem 2.4. For k real or p-adic, the Plancherel measure is

$$d\mu(\omega_{\lambda}) = \kappa \cdot \frac{d\lambda}{|c(\lambda)|^2}$$

where κ is a constant and

$$c(\lambda) = \prod_{b \in \Sigma_1^+} \frac{\zeta_k(\frac{1}{2}m_{b/2} + \lambda(b^{\vee}))}{\zeta_k(\frac{1}{2}m_{b/2} + m_b + \lambda(b^{\vee}))}$$

the functions ζ_k are defined in (5.3.5) and (5.3.7).

Remark 2.5. There is one important difference between the real and *p*-adic cases, in the *p*-adic case the formal multiplicity m_b can be negative if 2b is also the root, this is precisely the "exceptional case" dealt before.

References

[Mac] Ian G Macdonald. Spherical functions on a group of p-adic type. Ramanujan Institute, Centre for Advanced Study in Mathematics, University of Madras, Madras, 1971. Publications of the Ramanujan Institute, (2):9.