LOCAL LANGLANDS CONJECTURE FOR G_2

RUI CHEN

1. Introduction

This is a study note for the Gan-Savin paper [GS23b], it will be abbreviated as the GW paper. Let F be a non-archimedean local field of characteristic zero and residue characteristic p. Let W_F be the Weil group of F and let $WD_F = W_F \times SL_2(\mathbb{C})$ be the Weil-Deligne group. For a connected reductive group G over F, we assume it is split, Langlands conjectured that there is a surjective finite-to-one map from the set Irr(G) of irreducible smooth representations of G(F) to the set $\Phi(G)$ of L-parameters

$$WD_F \longrightarrow G^{\vee}$$

where G^{\vee} is the Langlands dual group of G and the homomorphisms are taken up to G^{\vee} -conjugacy. This leads to a partition of the set of equivalence classes of irreducible representations of G(F) into a disjoint union of finite subsets, which are the fibers of the map and are called L-packets. Moreover, one would like to characterize the map

$$\mathcal{L}_G: \operatorname{Irr}(G) \longrightarrow \Phi(G)$$

by requiring that it satisfies a number of natural conditions and to have a refined parametrization of its fibers.

The local Langlands conjecture (LLC) has proved for GL_n by Harris-Taylor and Henniart where the map \mathcal{L} is a bijection. Building upon this, the LLC has now been shown for the quasi-split classical groups by the work of Arthur, Moeglin and Mok as a consequence of the theory of twisted endoscopy using the stable twisted trace formula for GL_n and extended to pure inner forms by various authors. It has also been shown for the group GSp_4 and its inner forms using theta correspondence as the main tool. For general G, the recent work of Fargues-Scholze gives a general geometric construction of a semisimplified LLC. In another direction, for general tamely ramified groups, the work of Kaletha constructs an LLC for supercuspidal L-packets.

The purpose of the GW paper is to establish the local Langlands conjecture for the split exceptional group $G = G_2$, more precisely

Theorem 1.1. There is a natural surjective map

$$\mathcal{L}: Irr(G_2) \longrightarrow \Phi(G_2)$$

with finite fibers satisfying the following properties

- $\pi \in Irr(G_2)$ is square-integrable if and and only if $\mathcal{L}(\pi)$ does not factor through a proper Levi subgroup of $G_2^{\vee} = G_2(\mathbb{C})$.
- $\pi \in Irr(G_2)$ is tempered if and only if $\mathcal{L}(\pi)(W_F)$ is bounded in G_2^{\vee} .
- If $\pi \in Irr(G_2)$ is nontempred, so that π is the unique Langlands quotient of a standard module $Ind_P^{G_2}\tau$ induced from a proper parabolic subgroup P = MN, then $\mathcal{L}(\pi)$ is the composite of the L-parameter of τ with the natural inclusion $M^{\vee} \hookrightarrow G^{\vee}$.
- The map \mathcal{L} fratures in the following two commutative diagrams

$$Irr^{\spadesuit}(G_2) \longrightarrow \Phi(G_2)$$

$$\downarrow^{\theta} \qquad \qquad \iota'_* \uparrow$$

$$Irr(PD^{\times}) \stackrel{L}{\longrightarrow} \Phi(PGL_3)$$

Date: May 2025.

and

For the left hand columns in the two diagrams, the symbol θ refers to an appropriate theta correspondence.

- The map \mathcal{L} is uniquely characterized by the properties above.
- The map \mathcal{L} also features in the following commutative diagram

$$Irr_{gen,ds}(G_2) \xrightarrow{L} \Phi(G_2)$$

$$\downarrow^{\theta} \qquad \qquad \downarrow^{\iota_*}$$

$$Irr_{gen,ds}(PGSp_6) \qquad \Phi(PGSp_6)$$

$$\downarrow^{spin_*} \qquad \qquad \downarrow^{spin_*}$$

$$Irr(GL_8) \xrightarrow{L} \Phi(GL_8)$$

here $Irr_{qen.ds}$ refers to the subset of generic discrete series representation in Irr.

• For each $\phi \in \Phi(G_2)$, the fiber of \mathcal{L} over ϕ is in natural bijection with Irr S_{ϕ} where

$$S_{\phi} = \pi_0(Z_{G_2(\mathbb{C})}(\phi))$$

when $p \neq 3$. Moreover, for tempered ϕ , the trivial character of S_{ϕ} corresponds to the unique generic element of $\mathcal{L}^{-1}(\phi)$.

• The LLC for G_2 satisfies the following global-local compatibility. Suppose that Π is globally generic regular algebraic cuspidal automorphic representation of G_2 over a totally real number field k with a Steinberg component, suppose that

$$\rho_{\Pi}: \operatorname{Gal}(\overline{k}/k) \longrightarrow \operatorname{GL}_7(\overline{\mathbb{Q}}_{\ell})$$

is a Galois representation attached to Π , then ρ_{Π} factors through $G_2(\overline{\mathbb{Q}}_{\ell})$, the restriction of ρ_{Π} to the local Galois group $Gal(\bar{k}_v/k_v)$ corresponds to the local L-parameter $\mathcal{L}(\Pi_v)$.

2. Theta correspondence

One has the dual pairs

- $(PGL_3 \rtimes \mathbb{Z}/2\mathbb{Z}) \times G_2 \subset E_6 \rtimes \mathbb{Z}/2\mathbb{Z}$. $PD^{\times} \times G_2 \subset E_6^D$. $G_2 \times PGSp_6 \subset E_7$.

where D denotes a cubic division F-algebra. One can consider the restriction of the minimal representation of E to the relevant dual pair and obtain a local theta correspondence, in particular for a representation π of one member of a dual pair, one has a big theta lift $\Theta(\pi)$ on the other member of the dual pair, and its maximal semisimple quotient $\theta(\pi)$. In [GS23a], the following theorem was shown

Theorem 2.1. We have

(1)(Howe duality) $\Theta(\pi)$ has finite length and its maximal simple quotient $\theta(\pi)$ is irreducible or zero. (2) (Theta dichotomy) Let $\pi \in Irr(G_2)$, then π has a nonzero lift to exactly one of PD^{\times} or $PGSp_6$, in particular, one has a decomposition

$$Irr(G_2) = Irr^{\heartsuit}(G_2) \sqcup Irr^{\spadesuit}(G_2)$$

where $Irr^{\heartsuit}(G_2)$ consists of those irreducible representations which participate in theta correspondence for $PGSp_6$ and $Irr^{\spadesuit}(G_2)$ consists of those which participate in PD^{\times} .

(3) The theta correspondence for $PD^{\times} \times G_2$ defines an injective map

$$\theta_D: \operatorname{Irr}^{\spadesuit}(G_2) \hookrightarrow \operatorname{Irr}(PD^{\times})$$

which is bijective if $p \neq 3$ and $Irr^{\spadesuit}(G_2)$ is contained in the subset $Irr_{ds}(G_2)$ of discrete series representations.

The theta correspondence for $G_2 \times PGSp_6$ defines an injection

$$\theta: \operatorname{Irr}^{\heartsuit}(G_2) \hookrightarrow \operatorname{Irr}(PGSp_6)$$

the map theta carries tempered representations to tempered representations.

The theta correspondence for $(PGL_3 \rtimes \mathbb{Z}/2\mathbb{Z}) \times G_2$ defines an injective map

$$\theta_{M_3}: \operatorname{Irr}^{\clubsuit}(G_2) \hookrightarrow \operatorname{Irr}(PGL_3 \rtimes \mathbb{Z}/2\mathbb{Z})$$

where $Irr^{\clubsuit}(G_2) \subset Irr^{\heartsuit}(G_2)$ is the subset of representations which participates in theta correspondence with $PGL_3 \rtimes \mathbb{Z}/2\mathbb{Z}$. The map θ_{M_3} respects tempered (resp. discrete series) representations.

So we have a further decomposition

$$\operatorname{Irr}^{\Diamond}(G_2) = \operatorname{Irr}^{\Diamond}(G_2) \sqcup \operatorname{Irr}^{\clubsuit}(G_2)$$

where $\operatorname{Irr}^{\clubsuit}(G_2)$ consists of those representations which participate in theta correspondence with $PGL_3 \rtimes \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{Irr}^{\diamondsuit}(G_2)$ consists of those which participate exclusively in the theta correspondence with $PGSp_6$. So we have the following trichotomy result for discrete series representations

Proposition 2.2. Each irreducible discrete series representation of G_2 has a nonzero discrete series theta lift to exactly one of PD^{\times} , $PGL_3 \rtimes \mathbb{Z}/2\mathbb{Z}$ or $PGSp_6$. Setting $Irr_{ds}^{\bullet}(G_2) = Irr_{ds}(G_2) \cap Irr^{\bullet}(G_2)$, then we have the disjoint union

$$Irr_{ds}(G_2) = Irr_{ds}^{\spadesuit}(G_2) \sqcup Irr_{ds}^{\clubsuit}(G_2) \sqcup Irr_{ds}^{\diamondsuit}(G_2)$$

3. Parametrization of the fiber of $\mathcal L$

Proposition 3.1. For $\phi \in \Phi_{ds}^{\diamondsuit}(G_2)$, there is a unique generic representation in $\mathcal{L}^{-1}(\phi)$.

If not, we can denote $\sigma = \theta(\pi)$, $\sigma' = \theta(\pi')$, then we have σ and σ' are distinct generic discrete series representations of $PGSp_6$.

We can pick out a unique Xu's packet contained in $\tilde{\Pi}_{\phi^b}$, namely

 $\tilde{\Pi}_{\phi^b}^{X_*} := Xu$'s packet containing the unique generic representation $\theta(\pi)$ with $\mathcal{L}(\pi) = \phi$

We have

Proposition 3.2. Let $\phi \in \Phi_{ds}^{\diamondsuit}(G_2)$, the local theta correspondence defines a bijection

$$\mathcal{L}^{-1}(\phi) \leftrightarrow \tilde{\Pi}_{\phi^b}^{X_*}$$

The proof of this proposition is based on the following lemma-one in all in

Lemma 3.3. Let $\tilde{\Pi}_{\phi^b}^X \subset \tilde{\Pi}_{\phi^b}$ be any Xu's packet, then either all elements of $\tilde{\Pi}_{\phi^b}^X$ have nonzero theta lift to G_2 or none of them has.

Now let's discuss the proof of the main theorem on the fiber of \mathcal{L} assuming 3.2. The inclusion

$$\iota: G_2 \longrightarrow \operatorname{Spin}_7$$

gives rise to an isomorphism

$$S_{\phi} \cong S_{\iota \circ \phi}/Z(\operatorname{Spin}_{7})$$

and thus a bijection

$$\operatorname{Irr}(S_{\iota \circ \phi}/Z(\operatorname{Spin}_7)) \longleftrightarrow \operatorname{Irr}(S_{\phi})$$

on the other hand, the result from the endoscopy classification gives a bijection

$$\tilde{\Pi}_{\phi^b}^{X_*} \longleftrightarrow \operatorname{Irr}(S_{\iota \circ \phi}/Z(\operatorname{Spin}_7))$$

combining this with proposition 3.2, we get a bijection

$$\mathcal{L}^{-1}(\phi) \leftrightarrow \operatorname{Irr}(S_{\phi})$$

For $\phi \in \Phi_{ds}^{\diamondsuit}(G_2)$, we define the *L*-parameter of the distinguished Xu's packet $\tilde{\Pi}_{\phi^b}^{X_*}$ to be $\iota \circ \phi$. This definition is not really ad hoc, the distinguished Xu's packet $\tilde{\Pi}_{\phi^b}^{X_*}$ is the unique one on $\tilde{\Phi}_{\phi^b}$ for which the Langlands-Shahidi Spin L-function of its unique generic member is equal to the local L-factor for Spin $\circ \iota \circ \phi$ and hence has a pole at s=0. Now with this definition of the L-packet for $PGSp_6$

Theorem 3.4. We have

(a) For $\tau \in Irr(PGL_3)$ with L-parameter ϕ_{τ} , the local theta lifts of τ to G_2 is the set of $\pi \in Irr(G_2)$ whose enhanced L-parameter (ϕ, η) satisfies

$$\phi = \iota' \circ \phi_{\tau}, \ \eta \circ \iota'_{\star} = 1$$

where we recall that

$$\iota': SL_3(\mathbb{C}) \longrightarrow G_2(\mathbb{C})$$

is the natural embedding which induces a map of component groups

$$\iota'_*: \pi_0(Z_{SL_3}(\phi_\tau)) \longrightarrow S_{\iota' \circ \phi_\tau} = \pi_0(Z_{G_2}(\iota' \circ \phi_\tau))$$

(b) If τ_D denote the Jacquet-Langlands lift of τ to D^{\times} , then the set of local theta lifts of τ_D and τ_D^{\vee} to G_2 consists of those $\pi \in Irr(G_2)$ whose enhenced L-parameter (ϕ, η) satisfies

$$\phi = \iota' \circ \phi_{\tau}, \quad \eta \circ \iota'_{\star} \neq 1$$

(c) Suppose $\pi \in Irr(G_2)$ has enhanced L-parameter (ϕ, η) , then its local theta theta correspondence $\theta(\pi) \in Irr(PGSp_6)$ has enhanced L-parameter (ϕ', η') satisfying

$$\phi' = \iota \circ \phi, \quad \eta = \eta' \circ \iota_*$$

where we recall that

$$\iota: G_2(\mathbb{C}) \longrightarrow Spin_7(\mathbb{C})$$

is the natural embedding which induces a map of component groups

$$\iota_*: S_\phi \longrightarrow S_{\iota \circ \phi}$$

Thus, we have come full circle.

References

- [GS23a] Wee Teck Gan and Gordan Savin. Howe duality and dichotomy for exceptional theta correspondences. *Inventiones mathematicae*, 232(1):1–78, 2023.
- [GS23b] Wee Teck Gan and Gordan Savin. The local langlands conjecture for G_2 . In Forum of Mathematics, P_i , volume 11, page e28. Cambridge University Press, 2023.