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1. Introduction

This is my study note for the paper [GJ23] that establishes the connection between Howe duality and
relative Langlands duality.

2. Nilpotent orbits and generalized Whittaker model

2.1. Classification of nilpotent orbits. We first talk about the sl2 triple. We fix κ an Ad(G)-invariant
non-degenerate bilinear form on g, let γ = {e, h, f} ⊂ g be an sl2-triple associated to a nilpotent orbit of g.

Remark 2.1. Recall by the Jacobson-Morosov theorem, there is a bijection between conjugacy classes of sl2
triples and nilpotent orbits.

Under the adjoint sl2-action, g decomposes into sl2 weight spaces

gj = {v ∈ g | ad(h)v = jv }
for j ∈ Z. We can define the parabolic p = ⊕j≥0gj = l ⊕ u. Set u+ = ⊕j≥2gj . We get the corresponding
subgroups P = L⋉ U and U+ of G, note l = g0, hence L is the stabilizer of h. Denote the centralizer of γ
by Mγ , which is reductive.

We define a character χγ,ψ on U+ via

χγ,ψ(exp u) := ψ(κ(f, u)) ∀ u ∈ u+

we also denote κf (u) := κ(f, u).
Suppose G is the isometry group of a n-dimensional vector space V equipped with an orthogonal form B

over F . From the sl2-triple above, we obtain a decomposition of V as V = ⊕lj=1 V
(j) with

V (j) =Wj ⊗ Vj
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which is the isotypic component of V for the j-dimensional representation Wj of sl2 and Vj the multiplicity
space.

From the sl2 theory, Wj is symplectic if j is even and it is orthogonal if j is odd. The form B induces a
symplectic or orthogonal form Bj on the multiplicity space Vj . Bj is symplectic if j is even.
Mγ is a direct product of the isometry groups

Mγ
∼=

l∏
j=1

G(Vj , Bj)

Proposition 2.2. We have a parametrization of the nilpotent orbits of G

• the partition λ = [lal , · · · , 1a1 ].
• the forms on the multiplicity spaces (Vj , Bj).

such that we have

⊕j(Vj , Bj)⊗ (Wj , Aj) ∼= (V,B)

If G is an orthogonal group, then the even parts must also occur with even multiplicity in λ.

2.2. Generalized Whittaker models. We now define the generalized Whittaker models Wγ associated
with a nilpotent orbit γ and the associated generalized Whittaker models.

Definition 2.3. We say the nilpotent orbit associated with γ is even if U = U+.

Definition 2.4. When U = U+, we define

Wγ,ψ := indGMγUχγ

with trivial Mγ-action on χγ . Also for π ∈ Irr(G)

Wγ,ψ(π) := HomG(ind
G
MγUχγ , π

∨)

this is called the space of generalized Whittaker functionals of π.

We have a symplectic structure κ1 on g1 as κ1(v, w) = κ(f, [v, w]) for v, w ∈ g1, hence u/u+ ∼= g1
carries a Mγ-invariant symplectic form κ1. Since Mγ preserves the symplectic form κ1, similar to the
Weil representation constructed from the representation ωψ of the Heisenberg group, we can construct a

representation ωψ on M̃γ some central cover of Mγ . For a genuine representation ρ of M̃γ with trivial U
action, the representation ρ⊗ ωψ descends to an actual representation of MγU .

Definition 2.5. We define

Wγ,ρ,ψ := indGMγUρ⊗ ωψ

and Wγ,ρ,ψ(π) := HomG(ind
G
MγUρ ⊗ ωψ, π

∨), the generalized Whittaker model of π associated to γ and ρ.

More generally, ρ may be a genuine representation of H̃ for H a reductive subgroup of Mγ .

In the even orbit case, we have a canonical choice of ρ which is the trivial one. In the non-even case, this
should be achieved by choosing the smallest ( in the sense of Gelfand-Kirillov dimension) possible ρ.

3. Howe duality

3.1. Theta correspondence. We will fix a non-trivial unitary character ψ : F → C×.
Suppose (G1, G2) is a type I reductive dual pair, if dim V1 is odd then we have to work with representations

of Mp(V2). We assume G1 is the smaller group of the two.
One can restrict the Weil representation ωψ of Mp(V1 ⊗ V2) to G1 ×G2 and for each π ∈ Irr(G1) define

the big theta lift Θ(π) of π as

Θψ(π) := (ωψ ⊗ π∨)G1

the maximal G1-invariant quotient of ωψ ⊗ π∨.
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Theorem 3.1. (Howe duality) Let

C = {(π1, π2) ∈ Irr(G1)× Irr(G2) | π1 ⊗ π2 is a quotient of ωψ}
then C is the graph of a bijective function between Irr(G1) and Irr(G2). Furthermore, we have

dim Hom(ωψ, π1 ⊗ π2) ≤ 1

for all π1 ∈ Irr(G1), π2 ∈ Irr(G2). We will denote θ(π) the unique irreducible quotient of Θ(π), and call it
the small theta lift.

In general, the theta correspondence will not preserve the L-packet and there is the Adams conjecture
which describes the effects of theta correspondence on A-parameters when dimV2 is sufficiently large. There
is a characterization of this sufficiently large condition in terms of the ”first occurrence indices”.

3.2. Gomez-Zhu’s result. One would like to use the theta correspondence to relate the two generalized
Whittaker models on a dual pair, one need a correspondence of nilpotent orbits and this is achieved via the
moment map. We replace G1 and G2 by G,G′

Proposition 3.2. One has moment maps

g
ϕ←− Hom(V, V ′)

ϕ′

−→ g′

defined by ϕ(f) = ff∗ and ϕ′(f) = f∗f .
Given a nilpotent element e in the image of ϕ corresponds to a sl2-triple γ, one can define a nilpotent

orbit of sl2-triple γ
′ of g′ such that

• e, e′ are the images of some common element f ∈ Hom(V, V ′).
• the form on V ′ restricts to a nondegenerate form on ker(f).
• f sends the k-weight space of V ′ to the k + 1-weight space of V for all k ∈ Z.

The partitions corresponding to γ, γ′ are related in the following way: suppose their corresponding Young
tableaux are d, d′, then one removes the first column of d and adds suitably many rows of length 1 to obtain
d′. In other words, one has (V ′

j , B
′
j) = (Vj , Bj) and V

′
1 = V2⊕ Vnew for Vnew the newly added rows of length

1 in d′.

We assume that the nilpotent orbit defined by γ is in the image of the moment map ϕ, recall from the
discussion of the centralizer of the nilpotent orbit, we have

Mγ
∼=

j∏
k=1

G(Vk, Bk) Mγ′ ∼=
j∏

k=1

G′(V ′
k, B

′
k)

we observe that Mγ and Mγ′ contain factors G(V1, B1), G
′(V ′

1 , B
′
1) corresponding to the tows of length 1

in d and d′. Furthermore G′(V ′
1 , B

′
1) contains a subgroup G′(Vnew) which is an isometry subgroup of the

subspace Vnew ⊆ V ′
1 corresponding to the newly added rows of length 1 in d′. We have that G(V1, B1) and

G′(Vnew) forms a reductive dual pair inside Sp(V1 ⊗ Vnew).

Example 3.3. For the nilpotent orbit γ1 of so2k corresponds to a regular nilpotent orbit γr,1 of sp2k−2a, it
corresponds to the partition [2k − 2a− 1, 12a+1] of so2k.

The following is a result from [GZ14]

Proposition 3.4. For any π ∈ Irr(G′) and for a genuie representation τ ∈ Irr(G ˜(V1, B1)), one has

Wγ,τ,ψ(Θψ)(π) ∼=Wγ′,Θ(τ)∨,ψ(π
∨)

here

• Θ(π) is the big theta lift for the dual pair (G,G′).
• Θ(τ)∨ is the dual of the big theta lift for the dual pair (G(V1, B1), G

′(Vnew)).

Remark 3.5. If the nilpotent orbit defined by γ is not in the image of the moment map ϕ, then one has

Wγ,τ,ψ(Θψ(π)) = 0

for all π ∈ Irr(G′).
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4. Hyperspherical variety and geometric quantization

4.1. Geometric quantization of Whittaker induction. In this section, G,H will be Lie groups over C,
and H is a subgroup of G.

Definition 4.1. Consider any reductive subgroup H of G and a commuting SL2-factor, S a symplectic
H-vector space, we can define the Whittaker induction of S along H×SL2 → G as the symplectic induction
of S × (u/u+) from HU to G.

Under the philosophy of quantization, Whittaker induction corresponds to the formation of generalized
Whittaker representation 2.5 where

• S corresponds to ρ.
• u/u+ corresponds to the oscillator representation ωψ of U .
• the symplectic induction corresponds to the induction of representations.

It will be very interesting to make precise this philosophy in a way that unifies the quantization of hyper-
spherical varieties for the hook-type partitions and exceptional cases.

4.2. Hyperspherical Whittaker models. We determine an upper bound for the possible generalized
Whittaker models for the orthogonal groups arise from hyperspherical varieties.

Proposition 4.2. Let M be a hyperspherical variety, then H\L is a smooth affine spherical L-variety, where
L is the Levi factor of P = LU associated to the sl2 triple γ. In particular, H is a spherical subgroup of Mγ

and Mγ is a spherical subgroup of L.

We consider the case when the nilpotent orbit is even. For G = On acting on an n-dimensional vector
space V with an orthogonal form B, the nilpotent orbits in G are parametrized by partition λ = [lal , · · · , 1a1 ],
and forms on the multiplicity space (Vj , Bj). For the even nilpotent orbits, all the partition λ have the same
parity, we have

H =Mγ
∼=

l∏
j=1

G(Vj , Bj)

By checking the table of [KVS06], one can characterize all the nilpotent orbits γ which allow hyperspherical
varieties

Theorem 4.3. Let G be the orthogonal group On and M a hyperspherical variety, it is obtained as the
Whittaker induction along a map H × SL2 → G, let γ be the nilpotent orbit determined by the SL2 factor,
if γ is even, then it corresponds to a partition of the form

• [2a2 ] (Shalika).
• [n− a1, 1a1 ] (hook-type).
• finitely many low rank-exceptions: [3, 3], [4, 4], [6, 6].

5. Examples of Relative Langlands duality

5.1. Even orthogonal group. We determine the expected hyperspherical dual for the hook-type partitions
[n− a1, 1a1 ] of On. Suppose n = 2k is even, then we must have a1 = 2a+ 1 is odd.

Theorem 5.1. The hyperspherical varieties M1 and M2 defined by

• the datum O2a+1 × SL2 → O2k corresponds to the nilpotent orbit with partition [2k − 2a− 1, 12a+1]
and trivial S.

• the datum O2k−2a+1×SL2 → O2k corresponding to the nilpotent orbit with partition [2a−1, 12k−2a+1]
and trivial S.

they are dual under relative Langlands duality.

Recall that M1 and M2 have quantization Wγ1,triv1,ψ and Wγ2,triv2,ψ from our discussion on geometric
quantization of Whittaker induction.

Theorem 5.2. We have:
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• If π is an irreducible representation of O2k occurs as a quotient of Wγ1,triv1,ψ then π = θψ(σ) for σ
an irreducible representation of Sp2k−2a. Conversely, if σ is an irreducible ψ-generic representation
of Sp2k−2a, then π := θψ(σ) is an irreducible representation of O2k which occurs as a quotient of
Wγ1,triv1,ψ.

• If π is an irreducible representation of O2k which occurs as a quotient ofWγ2,triv2,ψ then π = θψ(σ) for
σ an irreducible representation of Sp2a. Conversely if σ is an irreducible ψ-generic representation of
Sp2a then π := θψ(σ) is an irreducible representation of O2k which occurs as a quotient of Wγ2,triv2,ψ.

Proof. We only prove the first one, the second one is similar. From the result 3.4 we have

Wγr,1,triv,ψ(Θψ(π))
∼=Wγ1,triv1,ψ(π

∨)

for all π ∈ Irr(O2k).
On one hand if π occurs as a quotient of Wγ1 then Wγ1(π

∨) ̸= 0 hence Wγr,1(Θ(π)) ̸= 0 in particular
Θ(π) ̸= 0 hence θ(π) ̸= 0. From theorem, π is the small theta lift of an irreducible representation of Sp2k−2a.
Note if Θ(π) is already irreducible hence equal to θ(π), then π is the small theta lift of an irreducible ψ-generic
representation of Sp2k−2a.

On the other hand, let σ be an irreducible ψ-generic tempered representation of Sp2k−2a, thenWγr,1(σ) ̸=
0, then as 1 ≤ a ≤ k − 1 and σ generic, we have θ(σ) ̸= 0. Now we want to show Wγ1(θ(σ)) ̸= 0, suppose
otherwise Wγ1(θ(σ)) = 0 then Wγr,1(Θ(θ(σ))) = 0 but this means σ as a quotient of Θ(θ(σ)) is not generic,
a contradiction. □

In other words, the theta-lift realizes the desired functorial lifting via the maps O2k−2a+1 × SL2 → O2k

and O2a+1 × SL2 → O2k. When a = k − 1, the corresponding nilpotent orbit is trivial and we obtain the
case of spherical variety O2k−1\O2k.

5.2. Exceptional partitions. For the [3, 3] partition, since A3 = D3, we can assume our group is GL4 and
the nilpotent orbit is of type [3,1], we have the following theorem:

Theorem 5.3. Let

• M1 be the hyperspherical variety associated with the datum GL1 × SL2 → GL4 corresponding to the
nilpotent orbit γ of GL4 with partition [3, 1] and trivial S.

• M2 be the hyperspherical variety associated with the datum GL4 × SL2 → GL4 corresponds to the
trivial nilpotent orbit and S = Std⊕ Std∗, for Std the standard representation of GL4.

Then M1 and M2 are dual under relative Langlands duality.

The quantization of M1 is the generalized Whittaker representation Wγ,ψ and M2 is the quantization of
the pullback of the Weil representation ωψ of Sp8 to the Levi factor GL4 of its Siegel parabolic subgroup.
The decomposition of Wγ,ψ follows from the result 3.4 and the decomposition of ωψ can be viewed as the
Adams conjecture for the dual pair U1 × U4

∼= GL4.
For the [4, 4] partition. We may take the group as G = PGSO8 to be the adjoint group. There are three

non-conjugate homomorphisms

fj : SO8 → G = PGSO8

and pj : G∨ = Spin8 → SO8. If we denote SO7 the stabilizer in SO8 of a unit vector in the standard
representation and

Spin
[j]
7 := p−1

j (SO7) ⊂ SO8

p1 is the standard representation and p2, p3 are considered as the half-spin representations of Spin8, this
gives three distinct conjugacy classes of embeddings Spin7 → Spin8 and hence three spherical varieties

Xj = Spin
[j]
7 \Spin8.

Theorem 5.4. Let

• M1 be the hyperspherical variety associated with the datum corresponding to a nilpotent orbit of
PGSO8 associated to a partition [4, 4].

• M2 is the cotangent bundle of the spherical variety

X2 = Spin
[2]
7 \Spin8
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then M1 and M2 are dual under relative Langlands duality.

The quantization of M1 is the generalized Whittaker model associated with the partition [4, 4]. The

quantization of M2 is L2(X2). The triality automorphism θ carries Spin
[1]
7 to Spin

[2]
7 and it induces

C∞
c (X2) ∼= C∞

c (X1)
θ

for X1 we have SO7\SO8
∼= Spin

[1]
7 \Spin8 = X1.

For the [6, 6] partition. One expects the following by the result of [WZ21].

Theorem 5.5. Let

• M1 be the hyperspherical variety associated with the datum corresponding to a nilpotent orbit γ of
PGSO12 with partition [6, 6].

• M2 the half-spin representations S of Spin12.

Then M1 and M2 are dual under relative Langlands duality.

As before, M1 has a quantization Wγ,ψ and the quantization of M2 can be obtained from the pullback of
the half-spin representation of the Weil representation ωψ of Mp32, (SL2, H) = (SL2,Spin12) is a dual pair
in the exceptional group E7, where H is the derived subgroup of the Levi factor L of a Heisenberg parabolic
P = LU of E7 and the unipotent U is a Heisenberg group corresponding to a 32-dimensional symplectic
vector space on which H acts via half-spin representation. For Π the minimal representation of E7, one has

ωψ ∼= ΠN,ψ

as Spin12, where N is a maximal unipotent subgroup of SL2. The decomposition of ωψ can be described in
terms of the exceptional theta correspondence.
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