HOWE DUALITY AND RELATIVE LANGLANDS DUALITY

RUI CHEN

Contents

1. Introduction 1
2. Nilpotent orbits and generalized Whittaker model 1
2.1. Classification of nilpotent orbits 1
2.2. Generalized Whittaker models 2
3. Howe duality 2
3.1. Theta correspondence 2
3.2. Gomez-Zhu's result 3
4. Hyperspherical variety and geometric quantization 4
4.1. Geometric quantization of Whittaker induction 4
4.2. Hyperspherical Whittaker models 4
5. Examples of Relative Langlands duality 4
5.1. Even orthogonal group 4
5.2. Exceptional partitions 5
References 6

1. Introduction

This is my study note for the paper GJ23 that establishes the connection between Howe duality and relative Langlands duality.

2. Nilpotent orbits and generalized Whittaker model

2.1. Classification of nilpotent orbits. We first talk about the $\mathfrak{s l}_{2}$ triple. We fix κ an $\operatorname{Ad}(G)$-invariant non-degenerate bilinear form on \mathfrak{g}, let $\gamma=\{e, h, f\} \subset \mathfrak{g}$ be an $\mathfrak{s l}_{2}$-triple associated to a nilpotent orbit of \mathfrak{g}.

Remark 2.1. Recall by the Jacobson-Morosov theorem, there is a bijection between conjugacy classes of $\mathfrak{s l}_{2}$ triples and nilpotent orbits.

Under the adjoint $\mathfrak{s l}_{2}$-action, \mathfrak{g} decomposes into $\mathfrak{s l}_{2}$ weight spaces

$$
\mathfrak{g}_{j}=\{v \in \mathfrak{g} \mid \operatorname{ad}(h) v=j v \quad\}
$$

for $j \in \mathbb{Z}$. We can define the parabolic $\mathfrak{p}=\oplus_{j \geq 0} \mathfrak{g}_{j}=\mathfrak{l} \oplus \mathfrak{u}$. Set $\mathfrak{u}^{+}=\oplus_{j \geq 2} \mathfrak{g}_{j}$. We get the corresponding subgroups $P=L \ltimes U$ and U^{+}of G, note $\mathfrak{l}=\mathfrak{g}_{0}$, hence L is the stabilizer of h. Denote the centralizer of γ by M_{γ}, which is reductive.

We define a character $\chi_{\gamma, \psi}$ on U^{+}via

$$
\chi_{\gamma, \psi}(\exp u):=\psi(\kappa(f, u)) \forall u \in \mathfrak{u}^{+}
$$

we also denote $\kappa_{f}(u):=\kappa(f, u)$.
Suppose G is the isometry group of a n-dimensional vector space V equipped with an orthogonal form B over F. From the $\mathfrak{s l}_{2}$-triple above, we obtain a decomposition of V as $V=\oplus_{j=1}^{l} V^{(j)}$ with

$$
V^{(j)}=W_{j} \otimes V_{j}
$$

which is the isotypic component of V for the j-dimensional representation W_{j} of $\mathfrak{s l}_{2}$ and V_{j} the multiplicity space.

From the $\mathfrak{s l}_{2}$ theory, W_{j} is symplectic if j is even and it is orthogonal if j is odd. The form B induces a symplectic or orthogonal form B_{j} on the multiplicity space $V_{j} . B_{j}$ is symplectic if j is even.
M_{γ} is a direct product of the isometry groups

$$
M_{\gamma} \cong \prod_{j=1}^{l} G\left(V_{j}, B_{j}\right)
$$

Proposition 2.2. We have a parametrization of the nilpotent orbits of G

- the partition $\lambda=\left[l^{a_{l}}, \cdots, 1^{a_{1}}\right]$.
- the forms on the multiplicity spaces $\left(V_{j}, B_{j}\right)$.
such that we have

$$
\oplus_{j}\left(V_{j}, B_{j}\right) \otimes\left(W_{j}, A_{j}\right) \cong(V, B)
$$

If G is an orthogonal group, then the even parts must also occur with even multiplicity in λ.
2.2. Generalized Whittaker models. We now define the generalized Whittaker models W_{γ} associated with a nilpotent orbit γ and the associated generalized Whittaker models.

Definition 2.3. We say the nilpotent orbit associated with γ is even if $U=U^{+}$.
Definition 2.4. When $U=U^{+}$, we define

$$
W_{\gamma, \psi}:=\operatorname{ind}_{M_{\gamma} U}^{G} \chi_{\gamma}
$$

with trivial M_{γ}-action on χ_{γ}. Also for $\pi \in \operatorname{Irr}(G)$

$$
W_{\gamma, \psi}(\pi):=\operatorname{Hom}_{G}\left(\operatorname{ind}_{M_{\gamma} U}^{G} \chi_{\gamma}, \pi^{\vee}\right)
$$

this is called the space of generalized Whittaker functionals of π.
We have a symplectic structure κ_{1} on \mathfrak{g}_{1} as $\kappa_{1}(v, w)=\kappa(f,[v, w])$ for $v, w \in \mathfrak{g}_{1}$, hence $\mathfrak{u} / \mathfrak{u}^{+} \cong \mathfrak{g}_{1}$ carries a M_{γ}-invariant symplectic form κ_{1}. Since M_{γ} preserves the symplectic form κ_{1}, similar to the Weil representation constructed from the representation ω_{ψ} of the Heisenberg group, we can construct a representation ω_{ψ} on \tilde{M}_{γ} some central cover of M_{γ}. For a genuine representation ρ of \tilde{M}_{γ} with trivial U action, the representation $\rho \otimes \omega_{\psi}$ descends to an actual representation of $M_{\gamma} U$.

Definition 2.5. We define

$$
W_{\gamma, \rho, \psi}:=\operatorname{ind}_{M_{\gamma} U}^{G} \rho \otimes \omega_{\psi}
$$

and $W_{\gamma, \rho, \psi}(\pi):=\operatorname{Hom}_{G}\left(\operatorname{ind}_{M_{\gamma} U}^{G} \rho \otimes \omega_{\psi}, \pi^{\vee}\right)$, the generalized Whittaker model of π associated to γ and ρ. More generally, ρ may be a genuine representation of \tilde{H} for H a reductive subgroup of M_{γ}.

In the even orbit case, we have a canonical choice of ρ which is the trivial one. In the non-even case, this should be achieved by choosing the smallest (in the sense of Gelfand-Kirillov dimension) possible ρ.

3. Howe duality

3.1. Theta correspondence. We will fix a non-trivial unitary character $\psi: F \rightarrow \mathbb{C}^{\times}$.

Suppose $\left(G_{1}, G_{2}\right)$ is a type I reductive dual pair, if $\operatorname{dim} V_{1}$ is odd then we have to work with representations of $\operatorname{Mp}\left(V_{2}\right)$. We assume G_{1} is the smaller group of the two.

One can restrict the Weil representation ω_{ψ} of $\operatorname{Mp}\left(V_{1} \otimes V_{2}\right)$ to $G_{1} \times G_{2}$ and for each $\pi \in \operatorname{Irr}\left(G_{1}\right)$ define the big theta lift $\Theta(\pi)$ of π as

$$
\Theta_{\psi}(\pi):=\left(\omega_{\psi} \otimes \pi^{\vee}\right)_{G_{1}}
$$

the maximal G_{1}-invariant quotient of $\omega_{\psi} \otimes \pi^{\vee}$.

Theorem 3.1. (Howe duality) Let

$$
C=\left\{\left(\pi_{1}, \pi_{2}\right) \in \operatorname{Irr}\left(G_{1}\right) \times \operatorname{Irr}\left(G_{2}\right) \mid \pi_{1} \otimes \pi_{2} \text { is a quotient of } \omega_{\psi}\right\}
$$

then C is the graph of a bijective function between $\operatorname{Irr}\left(G_{1}\right)$ and $\operatorname{Irr}\left(G_{2}\right)$. Furthermore, we have

$$
\operatorname{dim} \operatorname{Hom}\left(\omega_{\psi}, \pi_{1} \otimes \pi_{2}\right) \leq 1
$$

for all $\pi_{1} \in \operatorname{Irr}\left(G_{1}\right)$, $\pi_{2} \in \operatorname{Irr}\left(G_{2}\right)$. We will denote $\theta(\pi)$ the unique irreducible quotient of $\Theta(\pi)$, and call it the small theta lift.

In general, the theta correspondence will not preserve the L-packet and there is the Adams conjecture which describes the effects of theta correspondence on A-parameters when $\operatorname{dim} V_{2}$ is sufficiently large. There is a characterization of this sufficiently large condition in terms of the "first occurrence indices".
3.2. Gomez-Zhu's result. One would like to use the theta correspondence to relate the two generalized Whittaker models on a dual pair, one need a correspondence of nilpotent orbits and this is achieved via the moment map. We replace G_{1} and G_{2} by G, G^{\prime}
Proposition 3.2. One has moment maps

$$
\mathfrak{g} \stackrel{\phi}{\leftarrow} \operatorname{Hom}\left(V, V^{\prime}\right) \xrightarrow{\phi^{\prime}} \mathfrak{g}^{\prime}
$$

defined by $\phi(f)=f f^{*}$ and $\phi^{\prime}(f)=f^{*} f$.
Given a nilpotent element e in the image of ϕ corresponds to a $\mathfrak{s l}_{2}$-triple γ, one can define a nilpotent orbit of $\mathfrak{s l}_{2}$-triple γ^{\prime} of \mathfrak{g}^{\prime} such that

- e, e^{\prime} are the images of some common element $f \in \operatorname{Hom}\left(V, V^{\prime}\right)$.
- the form on V^{\prime} restricts to a nondegenerate form on $\operatorname{ker}(f)$.
- f sends the k-weight space of V^{\prime} to the $k+1$-weight space of V for all $k \in \mathbb{Z}$.

The partitions corresponding to γ, γ^{\prime} are related in the following way: suppose their corresponding Young tableaux are d, d^{\prime}, then one removes the first column of d and adds suitably many rows of length 1 to obtain d^{\prime}. In other words, one has $\left(V_{j}^{\prime}, B_{j}^{\prime}\right)=\left(V_{j}, B_{j}\right)$ and $V_{1}^{\prime}=V_{2} \oplus V_{\text {new }}$ for $V_{\text {new }}$ the newly added rows of length 1 in d^{\prime}.

We assume that the nilpotent orbit defined by γ is in the image of the moment map ϕ, recall from the discussion of the centralizer of the nilpotent orbit, we have

$$
M_{\gamma} \cong \prod_{k=1}^{j} G\left(V_{k}, B_{k}\right) \quad M_{\gamma^{\prime}} \cong \prod_{k=1}^{j} G^{\prime}\left(V_{k}^{\prime}, B_{k}^{\prime}\right)
$$

we observe that M_{γ} and $M_{\gamma^{\prime}}$ contain factors $G\left(V_{1}, B_{1}\right), G^{\prime}\left(V_{1}^{\prime}, B_{1}^{\prime}\right)$ corresponding to the tows of length 1 in d and d^{\prime}. Furthermore $G^{\prime}\left(V_{1}^{\prime}, B_{1}^{\prime}\right)$ contains a subgroup $G^{\prime}\left(V_{n e w}\right)$ which is an isometry subgroup of the subspace $V_{\text {new }} \subseteq V_{1}^{\prime}$ corresponding to the newly added rows of length 1 in d^{\prime}. We have that $G\left(V_{1}, B_{1}\right)$ and $G^{\prime}\left(V_{\text {new }}\right)$ forms a reductive dual pair inside $\operatorname{Sp}\left(V_{1} \otimes V_{\text {new }}\right)$.
Example 3.3. For the nilpotent orbit γ_{1} of $\mathfrak{s o}_{2 k}$ corresponds to a regular nilpotent orbit $\gamma_{r, 1}$ of $\mathfrak{s p}_{2 k-2 a}$, it corresponds to the partition $\left[2 k-2 a-1,1^{2 a+1}\right]$ of $\mathfrak{s o}_{2 k}$.

The following is a result from GZ14
Proposition 3.4. For any $\pi \in \operatorname{Irr}\left(G^{\prime}\right)$ and for a genuie representation $\tau \in \operatorname{Irr}\left(G\left(\widetilde{V_{1}, B_{1}}\right)\right)$, one has

$$
W_{\gamma, \tau, \psi}\left(\Theta_{\psi}\right)(\pi) \cong W_{\gamma^{\prime}, \Theta(\tau)^{\vee}, \psi}\left(\pi^{\vee}\right)
$$

here

- $\Theta(\pi)$ is the big theta lift for the dual pair $\left(G, G^{\prime}\right)$.
- $\Theta(\tau)^{\vee}$ is the dual of the big theta lift for the dual pair $\left(G\left(V_{1}, B_{1}\right), G^{\prime}\left(V_{n e w}\right)\right)$.

Remark 3.5. If the nilpotent orbit defined by γ is not in the image of the moment map ϕ, then one has

$$
W_{\gamma, \tau, \psi}\left(\Theta_{\psi}(\pi)\right)=0
$$

for all $\pi \in \operatorname{Irr}\left(G^{\prime}\right)$.

4. HYPERSPHERICAL VARIETY AND GEOMETRIC QUANTIZATION

4.1. Geometric quantization of Whittaker induction. In this section, G, H will be Lie groups over \mathbb{C}, and H is a subgroup of G.

Definition 4.1. Consider any reductive subgroup H of G and a commuting $S L_{2}$-factor, S a symplectic H-vector space, we can define the Whittaker induction of S along $H \times S L_{2} \rightarrow G$ as the symplectic induction of $S \times\left(\mathfrak{u} / \mathfrak{u}^{+}\right)$from $H U$ to G.

Under the philosophy of quantization, Whittaker induction corresponds to the formation of generalized Whittaker representation 2.5 where

- S corresponds to ρ.
- $\mathfrak{u} / \mathfrak{u}^{+}$corresponds to the oscillator representation ω_{ψ} of U.
- the symplectic induction corresponds to the induction of representations.

It will be very interesting to make precise this philosophy in a way that unifies the quantization of hyperspherical varieties for the hook-type partitions and exceptional cases.
4.2. Hyperspherical Whittaker models. We determine an upper bound for the possible generalized Whittaker models for the orthogonal groups arise from hyperspherical varieties.

Proposition 4.2. Let M be a hyperspherical variety, then $H \backslash L$ is a smooth affine spherical L-variety, where L is the Levi factor of $P=L U$ associated to the $\mathfrak{s l}_{2}$ triple γ. In particular, H is a spherical subgroup of M_{γ} and M_{γ} is a spherical subgroup of L.

We consider the case when the nilpotent orbit is even. For $G=O_{n}$ acting on an n-dimensional vector space V with an orthogonal form B, the nilpotent orbits in G are parametrized by partition $\lambda=\left[l^{a_{l}}, \cdots, 1^{a_{1}}\right]$, and forms on the multiplicity space $\left(V_{j}, B_{j}\right)$. For the even nilpotent orbits, all the partition λ have the same parity, we have

$$
H=M_{\gamma} \cong \prod_{j=1}^{l} G\left(V_{j}, B_{j}\right)
$$

By checking the table of KVS06], one can characterize all the nilpotent orbits γ which allow hyperspherical varieties

Theorem 4.3. Let G be the orthogonal group O_{n} and M a hyperspherical variety, it is obtained as the Whittaker induction along a map $H \times S L_{2} \rightarrow G$, let γ be the nilpotent orbit determined by the $S L_{2}$ factor, if γ is even, then it corresponds to a partition of the form

- $\left[2^{a_{2}}\right]$ (Shalika).
- $\left[n-a_{1}, 1^{a_{1}}\right]$ (hook-type).
- finitely many low rank-exceptions: $[3,3],[4,4],[6,6]$.

5. Examples of Relative Langlands duality

5.1. Even orthogonal group. We determine the expected hyperspherical dual for the hook-type partitions [$n-a_{1}, 1^{a_{1}}$] of O_{n}. Suppose $n=2 k$ is even, then we must have $a_{1}=2 a+1$ is odd.

Theorem 5.1. The hyperspherical varieties M_{1} and M_{2} defined by

- the datum $O_{2 a+1} \times S L_{2} \rightarrow O_{2 k}$ corresponds to the nilpotent orbit with partition $\left[2 k-2 a-1,1^{2 a+1}\right]$ and trivial S.
- the datum $O_{2 k-2 a+1} \times S L_{2} \rightarrow O_{2 k}$ corresponding to the nilpotent orbit with partition $\left[2 a-1,1^{2 k-2 a+1}\right]$ and trivial S.
they are dual under relative Langlands duality.
Recall that M_{1} and M_{2} have quantization $W_{\gamma_{1}, \text { triv }_{1}, \psi}$ and $W_{\gamma_{2}, \text { triv } 2, \psi}$ from our discussion on geometric quantization of Whittaker induction.

Theorem 5.2. We have:

- If π is an irreducible representation of $O_{2 k}$ occurs as a quotient of $W_{\gamma_{1}, \text { triv }, \psi}$ then $\pi=\theta_{\psi}(\sigma)$ for σ an irreducible representation of $S p_{2 k-2 a}$. Conversely, if σ is an irreducible ψ-generic representation of $S p_{2 k-2 a}$, then $\pi:=\theta_{\psi}(\sigma)$ is an irreducible representation of $O_{2 k}$ which occurs as a quotient of $W_{\gamma_{1}, t r i v_{1}, \psi}$.
- If π is an irreducible representation of $O_{2 k}$ which occurs as a quotient of $W_{\gamma_{2}, \text { triv }_{2}, \psi}$ then $\pi=\theta_{\psi}(\sigma)$ for σ an irreducible representation of $S p_{2 a}$. Conversely if σ is an irreducible ψ-generic representation of $S p_{2 a}$ then $\pi:=\theta_{\psi}(\sigma)$ is an irreducible representation of $O_{2 k}$ which occurs as a quotient of $W_{\gamma_{2}, \text { triv }}, \psi$.

Proof. We only prove the first one, the second one is similar. From the result 3.4 we have

$$
W_{\gamma_{r, 1}, \operatorname{triv}, \psi}\left(\Theta_{\psi}(\pi)\right) \cong W_{\gamma_{1}, \operatorname{triv}_{1}, \psi}\left(\pi^{\vee}\right)
$$

for all $\pi \in \operatorname{Irr}\left(O_{2 k}\right)$.
On one hand if π occurs as a quotient of $W_{\gamma_{1}}$ then $W_{\gamma_{1}}\left(\pi^{\vee}\right) \neq 0$ hence $W_{\gamma_{r, 1}}(\Theta(\pi)) \neq 0$ in particular $\Theta(\pi) \neq 0$ hence $\theta(\pi) \neq 0$. From theorem, π is the small theta lift of an irreducible representation of $S p_{2 k-2 a}$. Note if $\Theta(\pi)$ is already irreducible hence equal to $\theta(\pi)$, then π is the small theta lift of an irreducible ψ-generic representation of $S p_{2 k-2 a}$.

On the other hand, let σ be an irreducible ψ-generic tempered representation of $S p_{2 k-2 a}$, then $W_{\gamma_{r, 1}}(\sigma) \neq$ 0 , then as $1 \leq a \leq k-1$ and σ generic, we have $\theta(\sigma) \neq 0$. Now we want to show $W_{\gamma_{1}}(\theta(\sigma)) \neq 0$, suppose otherwise $W_{\gamma_{1}}(\theta(\sigma))=0$ then $W_{\gamma_{r, 1}}(\Theta(\theta(\sigma)))=0$ but this means σ as a quotient of $\Theta(\theta(\sigma))$ is not generic, a contradiction.

In other words, the theta-lift realizes the desired functorial lifting via the maps $O_{2 k-2 a+1} \times S L_{2} \rightarrow O_{2 k}$ and $O_{2 a+1} \times S L_{2} \rightarrow O_{2 k}$. When $a=k-1$, the corresponding nilpotent orbit is trivial and we obtain the case of spherical variety $O_{2 k-1} \backslash O_{2 k}$.
5.2. Exceptional partitions. For the [3, 3] partition, since $A_{3}=D_{3}$, we can assume our group is $G L_{4}$ and the nilpotent orbit is of type [3,1], we have the following theorem:

Theorem 5.3. Let

- M_{1} be the hyperspherical variety associated with the datum $G L_{1} \times S L_{2} \rightarrow G L_{4}$ corresponding to the nilpotent orbit γ of $G L_{4}$ with partition $[3,1]$ and trivial S.
- M_{2} be the hyperspherical variety associated with the datum $G L_{4} \times S L_{2} \rightarrow G L_{4}$ corresponds to the trivial nilpotent orbit and $S=S t d \oplus S t d^{*}$, for Std the standard representation of $G L_{4}$.
Then M_{1} and M_{2} are dual under relative Langlands duality.
The quantization of M_{1} is the generalized Whittaker representation $W_{\gamma, \psi}$ and M_{2} is the quantization of the pullback of the Weil representation ω_{ψ} of Sp_{8} to the Levi factor $G L_{4}$ of its Siegel parabolic subgroup. The decomposition of $W_{\gamma, \psi}$ follows from the result 3.4 and the decomposition of ω_{ψ} can be viewed as the Adams conjecture for the dual pair $U_{1} \times U_{4} \cong G L_{4}$.

For the $[4,4]$ partition. We may take the group as $G=P G S O_{8}$ to be the adjoint group. There are three non-conjugate homomorphisms

$$
f_{j}: S O_{8} \rightarrow G=P G S O_{8}
$$

and $p_{j}: G^{\vee}=\operatorname{Spin}_{8} \rightarrow S_{8}$. If we denote SO_{7} the stabilizer in SO_{8} of a unit vector in the standard representation and

$$
\operatorname{Spin}_{7}^{[j]}:=p_{j}^{-1}\left(S O_{7}\right) \subset S O_{8}
$$

p_{1} is the standard representation and p_{2}, p_{3} are considered as the half-spin representations of Spin_{8}, this gives three distinct conjugacy classes of embeddings $\operatorname{Spin}_{7} \rightarrow \operatorname{Spin}_{8}$ and hence three spherical varieties $X_{j}=\operatorname{Spin}_{7}^{[j]} \backslash \operatorname{Spin}_{8}$.
Theorem 5.4. Let

- M_{1} be the hyperspherical variety associated with the datum corresponding to a nilpotent orbit of PGSO_{8} associated to a partition $[4,4]$.
- M_{2} is the cotangent bundle of the spherical variety

$$
X_{2}=\operatorname{Spin}_{7}^{[2]} \backslash \operatorname{Spin}_{8}
$$

then M_{1} and M_{2} are dual under relative Langlands duality.
The quantization of M_{1} is the generalized Whittaker model associated with the partition [4, 4]. The quantization of M_{2} is $L^{2}\left(X_{2}\right)$. The triality automorphism θ carries $\operatorname{Spin}_{7}^{[1]}$ to $\operatorname{Spin}_{7}^{[2]}$ and it induces

$$
C_{c}^{\infty}\left(X_{2}\right) \cong C_{c}^{\infty}\left(X_{1}\right)^{\theta}
$$

for X_{1} we have $S O_{7} \backslash S O_{8} \cong \operatorname{Spin}_{7}^{[1]} \backslash \operatorname{Spin}_{8}=X_{1}$.
For the $[6,6]$ partition. One expects the following by the result of WZ21.
Theorem 5.5. Let

- M_{1} be the hyperspherical variety associated with the datum corresponding to a nilpotent orbit γ of $P G S O_{12}$ with partition $[6,6]$.
- M_{2} the half-spin representations S of Spin $_{12}$.

Then M_{1} and M_{2} are dual under relative Langlands duality.
As before, M_{1} has a quantization $W_{\gamma, \psi}$ and the quantization of M_{2} can be obtained from the pullback of the half-spin representation of the Weil representation ω_{ψ} of $\operatorname{Mp}_{32},\left(S L_{2}, H\right)=\left(S L_{2}, \operatorname{Spin}_{12}\right)$ is a dual pair in the exceptional group E_{7}, where H is the derived subgroup of the Levi factor L of a Heisenberg parabolic $P=L U$ of E_{7} and the unipotent U is a Heisenberg group corresponding to a 32-dimensional symplectic vector space on which H acts via half-spin representation. For Π the minimal representation of E_{7}, one has

$$
\omega_{\psi} \cong \Pi_{N, \psi}
$$

as Spin_{12}, where N is a maximal unipotent subgroup of $S L_{2}$. The decomposition of ω_{ψ} can be described in terms of the exceptional theta correspondence.

References

[GJ23] Wee Teck Gan and Bryan Wang Peng Jun. Generalised whittaker models as instances of relative langlands duality. arXiv preprint arXiv:2309.08874, 2023.
[GZ14] Raul Gomez and Chen-Bo Zhu. Local theta lifting of generalized whittaker models associated to nilpotent orbits. Geometric and Functional Analysis, 24:796-853, 2014.
[KVS06] Friedrich Knop and Bart Van Steirteghem. Classification of smooth affine spherical varieties. Transformation groups, 11(3):495-516, 2006.
[WZ21] Chen Wan and Lei Zhang. Periods of automorphic forms associated to strongly tempered spherical varieties. arXiv preprint arXiv:2102.03695, 2021.

