HOWE DUALITY AND RELATIVE LANGLANDS DUALITY

RUI CHEN

Contents

1. Introduction	1
2. Nilpotent orbits and generalized Whittaker model	1
2.1. Classification of nilpotent orbits	1
2.2. Generalized Whittaker models	2
3. Howe duality	2
3.1. Theta correspondence	2
3.2. Gomez-Zhu's result	3
4. Hyperspherical variety and geometric quantization	4
4.1. Geometric quantization of Whittaker induction	4
4.2. Hyperspherical Whittaker models	4
5. Examples of Relative Langlands duality	4
5.1. Even orthogonal group	4
5.2. Exceptional partitions	5
References	6

1. INTRODUCTION

This is my study note for the paper [GJ23] that establishes the connection between Howe duality and relative Langlands duality.

2. NILPOTENT ORBITS AND GENERALIZED WHITTAKER MODEL

2.1. Classification of nilpotent orbits. We first talk about the \mathfrak{sl}_2 triple. We fix κ an $\operatorname{Ad}(G)$ -invariant non-degenerate bilinear form on \mathfrak{g} , let $\gamma = \{e, h, f\} \subset \mathfrak{g}$ be an \mathfrak{sl}_2 -triple associated to a nilpotent orbit of \mathfrak{g} .

Remark 2.1. Recall by the Jacobson-Morosov theorem, there is a bijection between conjugacy classes of \mathfrak{sl}_2 triples and nilpotent orbits.

Under the adjoint \mathfrak{sl}_2 -action, \mathfrak{g} decomposes into \mathfrak{sl}_2 weight spaces

$$\mathfrak{g}_j = \{ v \in \mathfrak{g} \mid \mathrm{ad}(h)v = jv \}$$

for $j \in \mathbb{Z}$. We can define the parabolic $\mathfrak{p} = \bigoplus_{j \ge 0} \mathfrak{g}_j = \mathfrak{l} \oplus \mathfrak{u}$. Set $\mathfrak{u}^+ = \bigoplus_{j \ge 2} \mathfrak{g}_j$. We get the corresponding subgroups $P = L \ltimes U$ and U^+ of G, note $\mathfrak{l} = \mathfrak{g}_0$, hence L is the stabilizer of h. Denote the centralizer of γ by M_{γ} , which is reductive.

We define a character $\chi_{\gamma,\psi}$ on U^+ via

$$\chi_{\gamma,\psi}(\exp u) := \psi(\kappa(f,u)) \ \forall \ u \in \mathfrak{u}^+$$

we also denote $\kappa_f(u) := \kappa(f, u)$.

Suppose G is the isometry group of a n-dimensional vector space V equipped with an orthogonal form B over F. From the \mathfrak{sl}_2 -triple above, we obtain a decomposition of V as $V = \bigoplus_{j=1}^l V^{(j)}$ with

$$V^{(j)} = W_j \otimes V_j$$

Date: February 2024.

which is the isotypic component of V for the j-dimensional representation W_j of \mathfrak{sl}_2 and V_j the multiplicity space.

From the \mathfrak{sl}_2 theory, W_j is symplectic if j is even and it is orthogonal if j is odd. The form B induces a symplectic or orthogonal form B_j on the multiplicity space V_j . B_j is symplectic if j is even.

 M_{γ} is a direct product of the isometry groups

$$M_{\gamma} \cong \prod_{j=1}^{l} G(V_j, B_j)$$

Proposition 2.2. We have a parametrization of the nilpotent orbits of G

- the partition $\lambda = [l^{a_l}, \cdots, l^{a_1}].$
- the forms on the multiplicity spaces (V_i, B_i) .

such that we have

$$\oplus_j(V_j, B_j) \otimes (W_j, A_j) \cong (V, B)$$

If G is an orthogonal group, then the even parts must also occur with even multiplicity in λ .

2.2. Generalized Whittaker models. We now define the generalized Whittaker models W_{γ} associated with a nilpotent orbit γ and the associated generalized Whittaker models.

Definition 2.3. We say the nilpotent orbit associated with γ is even if $U = U^+$.

Definition 2.4. When $U = U^+$, we define

$$W_{\gamma,\psi} := \operatorname{ind}_{M_{\gamma}U}^G \chi_{\gamma}$$

with trivial M_{γ} -action on χ_{γ} . Also for $\pi \in \operatorname{Irr}(G)$

$$W_{\gamma,\psi}(\pi) := \operatorname{Hom}_G(\operatorname{ind}_{M,U}^G \chi_{\gamma}, \pi^{\vee})$$

this is called the space of generalized Whittaker functionals of π .

We have a symplectic structure κ_1 on \mathfrak{g}_1 as $\kappa_1(v, w) = \kappa(f, [v, w])$ for $v, w \in \mathfrak{g}_1$, hence $\mathfrak{u}/\mathfrak{u}^+ \cong \mathfrak{g}_1$ carries a M_{γ} -invariant symplectic form κ_1 . Since M_{γ} preserves the symplectic form κ_1 , similar to the Weil representation constructed from the representation ω_{ψ} of the Heisenberg group, we can construct a representation ω_{ψ} on \tilde{M}_{γ} some central cover of M_{γ} . For a genuine representation ρ of \tilde{M}_{γ} with trivial Uaction, the representation $\rho \otimes \omega_{\psi}$ descends to an actual representation of $M_{\gamma}U$.

Definition 2.5. We define

$$W_{\gamma,\rho,\psi} := \operatorname{ind}_{M_{\gamma}U}^G \rho \otimes \omega_{\psi}$$

and $W_{\gamma,\rho,\psi}(\pi) := \operatorname{Hom}_G(\operatorname{ind}_{M_{\gamma}U}^G \rho \otimes \omega_{\psi}, \pi^{\vee})$, the generalized Whittaker model of π associated to γ and ρ . More generally, ρ may be a genuine representation of \tilde{H} for H a reductive subgroup of M_{γ} .

In the even orbit case, we have a canonical choice of ρ which is the trivial one. In the non-even case, this should be achieved by choosing the smallest (in the sense of Gelfand-Kirillov dimension) possible ρ .

3. Howe duality

3.1. Theta correspondence. We will fix a non-trivial unitary character $\psi: F \to \mathbb{C}^{\times}$.

Suppose (G_1, G_2) is a type I reductive dual pair, if dim V_1 is odd then we have to work with representations of Mp (V_2) . We assume G_1 is the smaller group of the two.

One can restrict the Weil representation ω_{ψ} of $Mp(V_1 \otimes V_2)$ to $G_1 \times G_2$ and for each $\pi \in Irr(G_1)$ define the big theta lift $\Theta(\pi)$ of π as

$$\Theta_{\psi}(\pi) := (\omega_{\psi} \otimes \pi^{\vee})_{G_1}$$

the maximal G_1 -invariant quotient of $\omega_{\psi} \otimes \pi^{\vee}$.

Theorem 3.1. (Howe duality) Let

 $C = \{ (\pi_1, \pi_2) \in Irr(G_1) \times Irr(G_2) \mid \pi_1 \otimes \pi_2 \text{ is a quotient of } \omega_{\psi} \}$

then C is the graph of a bijective function between $Irr(G_1)$ and $Irr(G_2)$. Furthermore, we have

$$\dim \operatorname{Hom}(\omega_{\psi}, \pi_1 \otimes \pi_2) \leq 1$$

for all $\pi_1 \in Irr(G_1)$, $\pi_2 \in Irr(G_2)$. We will denote $\theta(\pi)$ the unique irreducible quotient of $\Theta(\pi)$, and call it the small theta lift.

In general, the theta correspondence will not preserve the L-packet and there is the Adams conjecture which describes the effects of theta correspondence on A-parameters when $\dim V_2$ is sufficiently large. There is a characterization of this sufficiently large condition in terms of the "first occurrence indices".

3.2. Gomez-Zhu's result. One would like to use the theta correspondence to relate the two generalized Whittaker models on a dual pair, one need a correspondence of nilpotent orbits and this is achieved via the moment map. We replace G_1 and G_2 by G, G'

Proposition 3.2. One has moment maps

$$\mathfrak{g} \xleftarrow{\phi} Hom(V,V') \xrightarrow{\phi'} \mathfrak{g}'$$

defined by $\phi(f) = ff^*$ and $\phi'(f) = f^*f$.

Given a nilpotent element e in the image of ϕ corresponds to a \mathfrak{sl}_2 -triple γ , one can define a nilpotent orbit of \mathfrak{sl}_2 -triple γ' of \mathfrak{g}' such that

- e, e' are the images of some common element $f \in Hom(V, V')$.
- the form on V' restricts to a nondegenerate form on ker(f).
- f sends the k-weight space of V' to the k + 1-weight space of V for all $k \in \mathbb{Z}$.

The partitions corresponding to γ, γ' are related in the following way: suppose their corresponding Young tableaux are d, d', then one removes the first column of d and adds suitably many rows of length 1 to obtain d'. In other words, one has $(V'_j, B'_j) = (V_j, B_j)$ and $V'_1 = V_2 \oplus V_{new}$ for V_{new} the newly added rows of length 1 in d'.

We assume that the nilpotent orbit defined by γ is in the image of the moment map ϕ , recall from the discussion of the centralizer of the nilpotent orbit, we have

$$M_{\gamma} \cong \prod_{k=1}^{j} G(V_k, B_k) \quad M_{\gamma'} \cong \prod_{k=1}^{j} G'(V'_k, B'_k)$$

we observe that M_{γ} and $M_{\gamma'}$ contain factors $G(V_1, B_1)$, $G'(V'_1, B'_1)$ corresponding to the tows of length 1 in d and d'. Furthermore $G'(V'_1, B'_1)$ contains a subgroup $G'(V_{new})$ which is an isometry subgroup of the subspace $V_{new} \subseteq V'_1$ corresponding to the *newly added* rows of length 1 in d'. We have that $G(V_1, B_1)$ and $G'(V_{new})$ forms a reductive dual pair inside $\operatorname{Sp}(V_1 \otimes V_{new})$.

Example 3.3. For the nilpotent orbit γ_1 of \mathfrak{so}_{2k} corresponds to a regular nilpotent orbit $\gamma_{r,1}$ of \mathfrak{sp}_{2k-2a} , it corresponds to the partition $[2k - 2a - 1, 1^{2a+1}]$ of \mathfrak{so}_{2k} .

The following is a result from [GZ14]

Proposition 3.4. For any $\pi \in Irr(G')$ and for a genuie representation $\tau \in Irr(G(V_1, B_1))$, one has $W_{\gamma,\tau,\psi}(\Theta_{\psi})(\pi) \cong W_{\gamma',\Theta(\tau)^{\vee},\psi}(\pi^{\vee})$

here

- $\Theta(\pi)$ is the big theta lift for the dual pair (G, G').
- $\Theta(\tau)^{\vee}$ is the dual of the big theta lift for the dual pair $(G(V_1, B_1), G'(V_{new}))$.

Remark 3.5. If the nilpotent orbit defined by γ is not in the image of the moment map ϕ , then one has

$$W_{\gamma,\tau,\psi}(\Theta_{\psi}(\pi)) = 0$$

for all $\pi \in \operatorname{Irr}(G')$.

4. Hyperspherical variety and geometric quantization

4.1. Geometric quantization of Whittaker induction. In this section, G, H will be Lie groups over \mathbb{C} , and H is a subgroup of G.

Definition 4.1. Consider any reductive subgroup H of G and a commuting SL_2 -factor, S a symplectic H-vector space, we can define the Whittaker induction of S along $H \times SL_2 \to G$ as the symplectic induction of $S \times (\mathfrak{u}/\mathfrak{u}^+)$ from HU to G.

Under the philosophy of quantization, Whittaker induction corresponds to the formation of generalized Whittaker representation 2.5 where

- S corresponds to ρ .
- $\mathfrak{u}/\mathfrak{u}^+$ corresponds to the oscillator representation ω_{ψ} of U.
- the symplectic induction corresponds to the induction of representations.

It will be very interesting to make precise this philosophy in a way that unifies the quantization of hyperspherical varieties for the hook-type partitions and exceptional cases.

4.2. Hyperspherical Whittaker models. We determine an upper bound for the possible generalized Whittaker models for the orthogonal groups arise from hyperspherical varieties.

Proposition 4.2. Let M be a hyperspherical variety, then $H \setminus L$ is a smooth affine spherical L-variety, where L is the Levi factor of P = LU associated to the \mathfrak{sl}_2 triple γ . In particular, H is a spherical subgroup of M_{γ} and M_{γ} is a spherical subgroup of L.

We consider the case when the nilpotent orbit is even. For $G = O_n$ acting on an *n*-dimensional vector space V with an orthogonal form B, the nilpotent orbits in G are parametrized by partition $\lambda = [l^{a_l}, \dots, 1^{a_1}]$, and forms on the multiplicity space (V_j, B_j) . For the even nilpotent orbits, all the partition λ have the same parity, we have

$$H = M_{\gamma} \cong \prod_{j=1}^{l} G(V_j, B_j)$$

By checking the table of [KVS06], one can characterize all the nilpotent orbits γ which allow hyperspherical varieties

Theorem 4.3. Let G be the orthogonal group O_n and M a hyperspherical variety, it is obtained as the Whittaker induction along a map $H \times SL_2 \rightarrow G$, let γ be the nilpotent orbit determined by the SL_2 factor, if γ is even, then it corresponds to a partition of the form

- $[2^{a_2}]$ (Shalika).
- $[n a_1, 1^{a_1}]$ (hook-type).
- *finitely many low rank-exceptions:* [3,3], [4,4], [6,6].

5. Examples of Relative Langlands duality

5.1. Even orthogonal group. We determine the expected hyperspherical dual for the hook-type partitions $[n - a_1, 1^{a_1}]$ of O_n . Suppose n = 2k is even, then we must have $a_1 = 2a + 1$ is odd.

Theorem 5.1. The hyperspherical varieties M_1 and M_2 defined by

- the datum O_{2a+1} × SL₂ → O_{2k} corresponds to the nilpotent orbit with partition [2k 2a 1, 1^{2a+1}] and trivial S.
- the datum $O_{2k-2a+1} \times SL_2 \to O_{2k}$ corresponding to the nilpotent orbit with partition $[2a-1, 1^{2k-2a+1}]$ and trivial S.

they are dual under relative Langlands duality.

Recall that M_1 and M_2 have quantization $W_{\gamma_1, \operatorname{triv}_1, \psi}$ and $W_{\gamma_2, \operatorname{triv}_2, \psi}$ from our discussion on geometric quantization of Whittaker induction.

Theorem 5.2. We have:

- If π is an irreducible representation of O_{2k} occurs as a quotient of $W_{\gamma_1, triv_1, \psi}$ then $\pi = \theta_{\psi}(\sigma)$ for σ an irreducible representation of Sp_{2k-2a} . Conversely, if σ is an irreducible ψ -generic representation of Sp_{2k-2a} , then $\pi := \theta_{\psi}(\sigma)$ is an irreducible representation of O_{2k} which occurs as a quotient of $W_{\gamma_1, triv_1, \psi}$.
- If π is an irreducible representation of O_{2k} which occurs as a quotient of $W_{\gamma_2, triv_2, \psi}$ then $\pi = \theta_{\psi}(\sigma)$ for σ an irreducible representation of Sp_{2a} . Conversely if σ is an irreducible ψ -generic representation of Sp_{2a} then $\pi := \theta_{\psi}(\sigma)$ is an irreducible representation of O_{2k} which occurs as a quotient of $W_{\gamma_2, triv_2, \psi}$.

Proof. We only prove the first one, the second one is similar. From the result 3.4 we have

$$W_{\gamma_{r,1},\operatorname{triv},\psi}(\Theta_{\psi}(\pi)) \cong W_{\gamma_1,\operatorname{triv}_1,\psi}(\pi^{\vee})$$

for all $\pi \in \operatorname{Irr}(O_{2k})$.

On one hand if π occurs as a quotient of W_{γ_1} then $W_{\gamma_1}(\pi^{\vee}) \neq 0$ hence $W_{\gamma_{r,1}}(\Theta(\pi)) \neq 0$ in particular $\Theta(\pi) \neq 0$ hence $\theta(\pi) \neq 0$. From theorem, π is the small theta lift of an irreducible representation of Sp_{2k-2a} . Note if $\Theta(\pi)$ is already irreducible hence equal to $\theta(\pi)$, then π is the small theta lift of an irreducible ψ -generic representation of Sp_{2k-2a} .

On the other hand, let σ be an irreducible ψ -generic tempered representation of Sp_{2k-2a} , then $W_{\gamma_{r,1}}(\sigma) \neq 0$, then as $1 \leq a \leq k-1$ and σ generic, we have $\theta(\sigma) \neq 0$. Now we want to show $W_{\gamma_1}(\theta(\sigma)) \neq 0$, suppose otherwise $W_{\gamma_1}(\theta(\sigma)) = 0$ then $W_{\gamma_{r,1}}(\Theta(\theta(\sigma))) = 0$ but this means σ as a quotient of $\Theta(\theta(\sigma))$ is not generic, a contradiction.

In other words, the theta-lift realizes the desired functorial lifting via the maps $O_{2k-2a+1} \times SL_2 \rightarrow O_{2k}$ and $O_{2a+1} \times SL_2 \rightarrow O_{2k}$. When a = k - 1, the corresponding nilpotent orbit is trivial and we obtain the case of spherical variety $O_{2k-1} \setminus O_{2k}$.

5.2. Exceptional partitions. For the [3, 3] partition, since $A_3 = D_3$, we can assume our group is GL_4 and the nilpotent orbit is of type [3,1], we have the following theorem:

Theorem 5.3. Let

- M_1 be the hyperspherical variety associated with the datum $GL_1 \times SL_2 \rightarrow GL_4$ corresponding to the nilpotent orbit γ of GL_4 with partition [3, 1] and trivial S.
- M₂ be the hyperspherical variety associated with the datum GL₄ × SL₂ → GL₄ corresponds to the trivial nilpotent orbit and S = Std ⊕ Std^{*}, for Std the standard representation of GL₄.

Then M_1 and M_2 are dual under relative Langlands duality.

The quantization of M_1 is the generalized Whittaker representation $W_{\gamma,\psi}$ and M_2 is the quantization of the pullback of the Weil representation ω_{ψ} of Sp₈ to the Levi factor GL_4 of its Siegel parabolic subgroup. The decomposition of $W_{\gamma,\psi}$ follows from the result 3.4 and the decomposition of ω_{ψ} can be viewed as the Adams conjecture for the dual pair $U_1 \times U_4 \cong GL_4$.

For the [4,4] partition. We may take the group as $G = PGSO_8$ to be the adjoint group. There are three non-conjugate homomorphisms

$$f_j: SO_8 \to G = PGSO_8$$

and $p_j: G^{\vee} = \text{Spin}_8 \to SO_8$. If we denote SO_7 the stabilizer in SO_8 of a unit vector in the standard representation and

$$\operatorname{Spin}_7^{[j]} := p_j^{-1}(SO_7) \subset SO_8$$

 p_1 is the standard representation and p_2, p_3 are considered as the half-spin representations of Spin₈, this gives three distinct conjugacy classes of embeddings $\text{Spin}_7 \to \text{Spin}_8$ and hence three spherical varieties $X_j = \text{Spin}_7^{[j]} \setminus \text{Spin}_8$.

Theorem 5.4. Let

- M_1 be the hyperspherical variety associated with the datum corresponding to a nilpotent orbit of $PGSO_8$ associated to a partition [4,4].
- M_2 is the cotangent bundle of the spherical variety

$$X_2 = Spin_7^{[2]} \backslash Spin_8$$

then M_1 and M_2 are dual under relative Langlands duality.

The quantization of M_1 is the generalized Whittaker model associated with the partition [4, 4]. The quantization of M_2 is $L^2(X_2)$. The triality automorphism θ carries $\text{Spin}_7^{[1]}$ to $\text{Spin}_7^{[2]}$ and it induces

$$C_c^{\infty}(X_2) \cong C_c^{\infty}(X_1)^{\theta}$$

for X_1 we have $SO_7 \setminus SO_8 \cong \operatorname{Spin}_7^{[1]} \setminus \operatorname{Spin}_8 = X_1$.

For the [6, 6] partition. One expects the following by the result of [WZ21].

Theorem 5.5. Let

- M_1 be the hyperspherical variety associated with the datum corresponding to a nilpotent orbit γ of $PGSO_{12}$ with partition [6,6].
- M_2 the half-spin representations S of $Spin_{12}$.

Then M_1 and M_2 are dual under relative Langlands duality.

As before, M_1 has a quantization $W_{\gamma,\psi}$ and the quantization of M_2 can be obtained from the pullback of the half-spin representation of the Weil representation ω_{ψ} of Mp₃₂, $(SL_2, H) = (SL_2, \text{Spin}_{12})$ is a dual pair in the exceptional group E_7 , where H is the derived subgroup of the Levi factor L of a Heisenberg parabolic P = LU of E_7 and the unipotent U is a Heisenberg group corresponding to a 32-dimensional symplectic vector space on which H acts via half-spin representation. For Π the minimal representation of E_7 , one has

$$\omega_{\psi} \cong \prod_{N,\psi}$$

as Spin₁₂, where N is a maximal unipotent subgroup of SL_2 . The decomposition of ω_{ψ} can be described in terms of the exceptional theta correspondence.

References

- [GJ23] Wee Teck Gan and Bryan Wang Peng Jun. Generalised whittaker models as instances of relative langlands duality. arXiv preprint arXiv:2309.08874, 2023.
- [GZ14] Raul Gomez and Chen-Bo Zhu. Local theta lifting of generalized whittaker models associated to nilpotent orbits. Geometric and Functional Analysis, 24:796–853, 2014.
- [KVS06] Friedrich Knop and Bart Van Steirteghem. Classification of smooth affine spherical varieties. Transformation groups, 11(3):495–516, 2006.
- [WZ21] Chen Wan and Lei Zhang. Periods of automorphic forms associated to strongly tempered spherical varieties. arXiv preprint arXiv:2102.03695, 2021.