SPHERICAL FUNCTIONS OF HERMITIAN FORMS

RUI CHEN

1. Introduction

This is a summary for a series of papers by Hironaka [Hir88a], [Hir89], [Hir88b], where she studies the spherical functions on Hermitian forms.

2. Notation

We denote k a p-adic local field, where the residue field of k is not of char 2, let ℓ be a unramified extension of k of degree 2. For a matrix $A \in M_n(k)$, denote $A^* = \overline{A}^t$. For a positive integer n, let $X = X_n = \{A \in G : A^* = A\}$ and $X(\mathcal{O}) = X \cap M_n(\mathcal{O})$. The group $G = GL_n(k)$ acts on X by $g \cdot x = gxg^*$. For $x \in X$, let $x_{(i)}$ be the upper left i by i block of x and $d_i(x)$ the determinant of x.

Let $C_c^{\infty}(X)^K = S(K \setminus X)$ be the K-invariant compactly supported smooth function on X. This is naturally a module of $\mathcal{H}(G,K)$.

Now we recall the spherical functions and the spherical transform on $S(K \setminus X)$, let $x \in X$, $s = (s_1, \dots, s_n) \in \mathbb{C}^n$ and a character $\chi = (\chi_1, \dots, \chi_n)$ of $(k^*/k^{*2})^n$ for which $\chi_i(\pi) = 1$, we define

$$\zeta(x;z) = \zeta(x;s) = \int_{K'} \prod_{i=1}^{n} |d_i(k \cdot x)|^{s_i} dk$$

and

$$F: S(K\backslash X) \longrightarrow \mathbb{C}(q^{z_1}, \cdots, q^{z_n})$$

$$F(\varphi)(z) = \int_X \varphi(z)\zeta(x^{-1}; z) \ dx$$

$$3. \ n = 2 \text{ Case}$$

Theorem 3.1. For $\lambda = (\lambda_1, \lambda_2) \in \Lambda_2$, we have

$$\zeta(\pi^{\lambda},z) = \frac{(-1)^{\lambda_1}q^{-(\lambda_1-\lambda_2)/2}(q^{2z_2}-q^{2z_1-1})}{(1+q^{-2})(q^{2z_2}+q^{2z_1})} \sum_{\sigma \in S_2} \sigma\{q^{\langle \lambda,2z\rangle} \frac{q^{2z_1}+q^{2z_2-1}}{q^{2z_1}-q^{2z_2}}\}$$

where $\langle \lambda, 2z \rangle = 2\lambda_1 z_1 + 2\lambda_2 z_2$ and σ acts on z_1 and z_2 as permutation.

For $x \in X \cap M_2(\mathcal{O})$, we have

$$\zeta(x; s_1, s_2) = \frac{|\det x|^{s_2}}{1 + q^{-2}} \sum_{r>0} \frac{\mu^{pr}(\pi^r, x)}{\mu(\pi^r, \pi^r)} \zeta(\pi^r; s_1)$$

By the formulas for ζ and μ^{pr} we get the formulas for $\zeta(\begin{pmatrix} \pi^{2n} & 0 \\ 0 & 1 \end{pmatrix}; s_1, s_2)$ and $\zeta(\begin{pmatrix} \pi^{2n-1} & 0 \\ 0 & 1 \end{pmatrix}; s_1, s_2)$, and hence the formula for ζ

$$\zeta(\pi^{\lambda}, z) = \frac{(-1)^{\lambda_1} q^{-(\lambda_1 - \lambda_2)/2} (q^{2z_2} - q^{2z_1 - 1})}{(1 + q^{-2})(q^{2z_2} + q^{2z_1})} \sum_{\sigma \in S_2} \sigma \{ q^{\langle \lambda, 2z \rangle} \frac{q^{2z_1} + q^{2z_2 - 1}}{q^{2z_1} - q^{2z_2}} \}$$

We define $\Psi_z(x) = \frac{q^{2z_2} + q^{2z_1}}{q^{2z_2} - q^{2z_1-1}} \zeta(x; z)$, then by theorem 3.1, we see that $\Psi_z(x)$ is an entire function of z in \mathbb{C}^2 and satisfies the functional equation $\Psi_{\sigma z}(x) = \Psi_z(x)$ for $\sigma \in S_2$.

Date: March 2025.

We define for each $\varphi \in S(K \backslash X)$

$$\hat{\varphi}(z) = \int_{Y} \varphi(x) \Psi_z(x^{-1}) dx$$

Let $\mathfrak{a}^* = \{i\mathbb{R}/(\pi/(\log q)\mathbb{Z})\}^2$ and denote $d\mu(z)$ the measure on \mathfrak{a}^* by

$$d\mu(z) = \frac{(1+q^{-2})^2}{2(1-q^{-1})} \cdot \frac{dz}{|c(z)|^2}$$

where dz is the measure on \mathfrak{a}^* normalized by $\int_{\mathfrak{a}^*} dz = 1$, $z = (z_1, z_2) \in \mathfrak{a}^*$ and

$$c(z) = \frac{q^{2z_1} + q^{2z_2 - 1}}{q^{2z_1} - q^{2z_2}}$$

Theorem 3.2. (Plancherel formula) For any $\varphi, \psi \in S(K \setminus X)$, the following identity holds:

$$\int_{X} \varphi(x) \overline{\psi(x)} dx = \int_{\mathfrak{a}^{*}} \hat{\varphi}(z) \overline{\hat{\psi}(z)} d\mu(z)$$

For $\varphi \in S(K \setminus X)$, define $\check{\varphi} \in S(K \setminus X)$ by $\check{\varphi}(x) = \varphi(x^{-1})$, $x \in X$. To prove theorem 3.2, it suffices to show that the identity holds for $(\operatorname{ch}_{\lambda})^{\vee}$ and $(\operatorname{ch}_{\mu})^{\vee}$, let $v(K \cdot \pi^{\lambda}) = \int_{X} \operatorname{ch}_{\lambda}(x) \, dx$, it is easy to see

$$\int_{X} (\operatorname{ch}_{\lambda})^{\vee}(x) \overline{(\operatorname{ch}_{\mu})^{\vee}(x)} \ dx = \delta_{\lambda \mu} v(K \cdot \pi^{\lambda})$$

4. General case

X has an open P-orbit X' and finite P-orbit decomposition $X' = \bigsqcup_u X_u$, $\{d_i(x) \mid 1 \leq i \leq r\}$ forms a set of basic relative P-invariants defined over k and k-rank of $(P) = \operatorname{rank}(X^*(P))$.

For $x \in \Omega, g \in G$ and $s \in \mathbb{C}^r$ with $\text{Re}(s_i) \geq 0$ we put

$$d_u^s(g;x) = 1_{X_u}(g \cdot x) \prod_{i=1}^r |d_i(g \cdot x)|^{s_i}$$

we set

$$\omega_u^s(x) = \int_K d_u^s(k; x) \ dk$$

then we have

$$\omega(x;s) = \sum_{u} \omega_u^s(x)$$

Proposition 4.1. For $x \in \Omega$ generic s and $\chi = \chi_s$, we have

$$(\omega_u^{\chi}(x))_{u \in \mathcal{U}} = \frac{1}{Q} \sum_{\sigma \in W} \gamma(\sigma \chi) B_{\sigma}(\chi) (\mathscr{P}_B(d_u^{\sigma \chi}(x))(1))_{u \in \mathcal{U}}$$

and $B_{\sigma}(\chi)$ is the invertible matrix determined by

$$(\omega_u^{\chi}(x))_{u\in\mathscr{U}} = B_{\sigma}(\chi)(\omega_u^{\sigma\chi}(x))_{u\in\mathscr{U}}$$

The following theorem is proven based on the Casselman-Shalika method

Theorem 4.2. For each $\lambda \in \Lambda_n$, we have

$$\omega(\pi^{\lambda}; z) = (-1)^{\sum_{i=1}^{n} i\lambda_{i}} q^{-\sum_{i=1}^{n} (n-2i+1)\lambda_{i}/2} \prod_{i=1}^{n} \frac{1-q^{-2}}{1-q^{-2i}} \prod_{1 \leq i < j \leq n} \frac{q^{z_{j}} - q^{z_{i}-1}}{q^{z_{j}} + q^{z_{i}}}$$

$$\times \sum_{\sigma \in S_{n}} \sigma(q^{\langle z, \lambda \rangle} \prod_{1 \leq i < j \leq n} \frac{q^{z_{i}} + q^{z_{j}-1}}{q^{z_{i}} - q^{z_{j}}})$$

where $\sigma \in S_n$ acts on $z = (z_1, \dots, z_n)$ as $\sigma(z) = (z_{\sigma(1)}, \dots, z_{\sigma(n)})$.

Let
$$\chi=(\chi_1,\cdots,\chi_n)\in\{(k^\times/N(\ell^\times))^\wedge\}^n$$
. Define
$$L(x;\chi;s)=L(x;\chi;z)$$

$$=\int_K\prod_{i=1}^n|d_i(k\cdot x)|^{s_i}\chi_i(d_i(k\cdot x))\ dk$$

then for $x \in \Omega_j$, we have

$$L(x;\chi;s) = \sum_{u \in \{0,1\}^n} \chi(u) \omega_u^s(x)$$

We define the spherical Fourier transform on $S(K \setminus X)$ as

$$\wedge: S(K\backslash X) \longrightarrow \mathbb{C}(q^{z_1}, \cdots, q^{z_n})$$
$$\varphi \longmapsto \hat{\varphi}(z) = \int_{Y} \varphi(x) \Psi_z(x^{-1}) \ dx$$

Theorem 4.3. The spherical Fourier transform \wedge gives an $\mathcal{H}(G,K)$ -module isomorphism

$$S(K\backslash X) \cong \mathbb{C}[q^{\pm z_1}, \cdots, q^{\pm z_n}]^{S_n}$$

where the right hand side is regarded as the $\mathcal{H}(G,K)$ -module.

Using the explicit expression of spherical functions in theorem 1, we can prove the following theorem on Plancherel formula by the same argument used in the Macdonald formula

Theorem 4.4. (Plancherel formula) Let $\mathfrak{a}^* = \{i(\mathbb{R}/\frac{2\pi}{\log a}\mathbb{Z})\}^n$ and define the measure $d\mu(z)$ on \mathfrak{a}^* by

$$d\mu(z) = \frac{1}{n!} \frac{\omega_n(-q^{-1})}{(1+q^{-1})^n} \cdot \frac{dz}{|c(z)|^2}$$

where dz is the Haar measure on \mathfrak{a}^* normalized by $\int_{\mathfrak{a}^*} \ dz = 1$ and

$$c(z) = \prod_{1 \le i < j \le n} \frac{q^{z_i} + q^{z_j - 1}}{q^{z_i} - q^{z_j}}$$

then for any $\varphi, \psi \in S(K \backslash X)$ we have

$$\int_{X} \varphi(x) \overline{\psi(x)} \ dx = \int_{\sigma^*} \hat{\varphi}(z) \overline{\hat{\psi}(z)} \ d\mu(z)$$

References

- [Hir88a] Yumiko Hironaka. Spherical functions of hermitian and symmetric forms I. Japanese journal of mathematics. New series, 14(1):203–223, 1988.
- [Hir88b] Yumiko Hironaka. Spherical functions of hermitian and symmetric forms III. Tohoku Mathematical Journal, Second Series, 40(4):651–671, 1988.
- [Hir89] Yumiko Hironaka. Spherical functions of hermitian and symmetric forms II. Japanese journal of mathematics. New series, 15(1):15–51, 1989.