GENERIC REPRESENTATIONS FOR UNITARY GROUPS

RUI CHEN

1. Introduction

This is a study note for the [GJR01] paper where they proved for the quasisplit unitary group in three variables, every tempered packet of cuspidal automorphic representation contains a globally generic representation.

2. Global and local Bessel distributions

Suppose that G is a reductive group defined and quasi-split over a number field F, let N be the maximal unipotent subgroup in G and θ a character of $N(F_{\mathbb{A}})$ trivial on N(F) and generic. Let π be a cuspidal automorphic representation of $G(F_{\mathbb{A}})$ and V the isotypic component of the space of cusp forms corresponding to π , if ϕ is a smooth vector in V, we set

$$\mathcal{W}(\phi) := \int_{N(F) \backslash N(F_{\mathbb{A}})} \phi(n) \overline{\theta}(n) \ dn$$

we say that π is **globally generic** with respect to θ if the linear form \mathcal{W} is not identically zero. If \mathcal{W} is non-zero, then for each place v, π_v is generic with respect to θ_v .

We may decompose $V = V_1 \oplus V_0$ with V_1 the closure of the kernel of the map $\phi \mapsto W_{\phi}$. The representation on V_0 is irreducible. It is generally conjectured that inside a tempered L-packet of automorphic representations, there is exactly one component which is generic with respect to the given generic character θ .

For π as above, we define a global Bessel distribution as

$$J_{\pi}(f) := \sum_{\phi} \mathcal{W}(\rho(f)\phi) \overline{\mathcal{W}(\phi)}$$

here the sum is over an orthogonal basis of V_0 .

At a place v, we may define the local Bessel distribution as

$$\mathcal{B}_v(f_v) := \sum_{\phi} \mathcal{W}_v(\pi_v(f_v)\phi) \overline{\mathcal{W}_v(\phi)}$$

this distribution is defined up to a positive factor.

It follows from the local uniqueness that the global Bessel distribution decomposes as in infinite product of the local Bessel distributions

$$J_{\pi}(f) = C \prod_{v} \mathcal{B}_{v}(f_{v}) \text{ for } f = \otimes f_{v}$$

the question at hand is to compute the constant in terms of L-functions attached to π .

Let E/F be a quadratic extension of number fields with Galois group $\{1,\sigma\}$, we write $\sigma(z)=\overline{z}$, we let U_1 the unitary group in one variable, we denote by G the group GL(3) regarded as an algebraic group over E and we denote Z its center. We let E be the group E its center and an algebraic group over E and we denote by E its center. We say that a E is distinguished by E if the central character E of E is trivial on E and there is a form E in the space of E such that

$$\mathcal{I}(\phi) := \int_{Z_H(\mathbb{A})H(F)\backslash H(F_{\mathbb{A}})} \phi(h) \ dh \neq 0$$

Date: July 2025.

It is a result of Flicker that Π is distinguished if and only if the Asai L-function attached to Π has a pole at s=1. It is another result of Flicker that if Π is distinguished, then $\Pi^{\sigma}=\tilde{\Pi}$. The condition of symmetry is equivalent to Π being the standard base change of a tempered stable packet of automorphic representation of the unitary group. This fact is predicted by the analysis of the potential pole of the Asai L-function in terms of the L-group.

Our main tool is the relative trace formula, the relative trace formula used here was first discussed in [Y] in the context of GL_2 .

3. Sketech of the relative trace formula

If f is a smooth function of compact support on $GL_3(E_{\mathbb{A}})$ we define a kernel

$$K_f(x,y) = \int_{Z(E_{\mathbb{A}})/Z(E)} \left(\sum_{\xi \in GL_3(E)} f(x^{-1}\xi yz)\omega(z) \right) dz$$

our main object of study is the distribution

$$J(f) := \int_{H(F)Z_H(F_{\mathbb{A}})\backslash H(F_{\mathbb{A}})} \int_{N(E)\backslash N(E_{\mathbb{A}})} K_f(h,n) \ \theta(n) \ dndh$$

this distribution can be computed in terms of the symmetric space

$$\mathfrak{S} = \{ s \in GL_3(E) : s\overline{s} = 1 \}$$

There is a smooth function of compact support Φ on $\mathfrak{S}(F_{\mathbb{A}})$ such that

$$\Phi(\mathcal{P}(g)) = \int_{H(F_{\mathbb{A}})} f(hg) \ dh$$

then

$$J(f) = \int_{N(E)\backslash N(E_{\mathbb{A}})} \int_{U_1(F)\backslash U_1(F_{\mathbb{A}})} \; (\sum_{\xi \in \mathfrak{S}(F)} \; \Phi(\overline{n}^{-1}\xi nu)) \theta(n) dn \; \zeta(u) \; du$$

then

$$J(f) = \sum_{\alpha \in E^{\times}} \int_{U_1(F_{\mathbb{A}})} J(ud_{\alpha}, \Phi) \zeta(u) \ du$$

Likewise, we can consider the unitary group U for the Hermitian matrix ω , the group is defined by $\overline{g}^t \omega g = \omega$. We denote A' the group of diagonal matrices, by N' the group of upper triangular matrices with unit diagonal in U and by Z_U the center of U. Let f' be a smooth function of compact support on $U(F_{\mathbb{A}})$, we construct a kernel

$$K'_{f'}(x,y) = \int_{Z_U(F_{\mathbb{A}})/Z_U(F)} \sum_{\xi \in IU(F)} f'(x^{-1}\xi yz)\zeta(z) dz$$

and the distribution

$$J'(f') := \int K_{f'}(n_1, n_2)\theta'(n_1)\theta'(n_2)dn_1 \ dn_2$$

then

$$J'(f') = \sum_{\alpha} J'(ud_{\alpha}, f')\zeta(u) \ du$$

After a matching of local orbital integrals, we have

$$J(f) = J'(f')$$

As usual, we may decompose the kernel K and K' with respect to the cuspidal data, for the cuspidal data χ for G and the cuspidal data χ' for U, we obtain a kernel K_{χ} and $K'_{\chi'}$, we define a corresponding distribution $J_{\chi}(f)$ (resp. $J_{\chi'}(f')$).

Let χ be a cuspidal representation with central character ω , then $J_{\chi}(f) = 0$ unless χ is distinguished by H. Now if χ is distinguished, it follows that we have an identity

$$J_{\chi}(f) = \sum_{\substack{\chi' \\ 2}} J_{\chi'}(f)$$

where the sum on the right is over all χ' such that the unramified representation $\otimes_{v\notin S} \chi_v$ is the image of the unramified representation $\otimes_{v_0\notin S_0}\chi'_{v_0}$ under the standard base change. From the formula, it follows that there is at least one χ' such that $J_{\chi'}\neq 0$. This implies χ' is globally generic.

A natural question is to ask whether the sum on the right has only one term, thanks to the local result, we can prove this and we have an identity

$$J_{\chi}(f) = J_{\chi'}(f')$$

4. Factorization of the period

If Π is distinguished we will need to express the linear form

$$\mathcal{J}(\phi) := \int_{Z_H(F_{\mathbb{A}})H(F)\backslash H(F_{\mathbb{A}})} \phi(h) \ dh$$

on the space of Π as a product of local linear forms.

Let Φ be a Schwartz-Bruhat function on $F_{\mathbb{A}}^n$ and ϕ a vector in Π , set

$$W(g) := \int \phi(ng)\overline{\theta}(n) \ dn$$

we set

$$\Psi(s, W, \Phi) := \int_{N(F_{\mathbb{A}}) \backslash H(F_{\mathbb{A}})} W(\epsilon h) \phi[(0, 0, \cdots, 1)h] |\det h|^{s} dh$$

we assume that W and Φ are product of local functions. We choose S_0 sufficiently large so that outside S the function W_v is K_v -invariant and outside S_0 , Φ_{v_0} is the characteristic function of $\mathcal{O}_{v_0}^n$.

Let S_i be the set of places in S_0 which are inert in E and let S_s be the set of places in S_0 which split in E, from the theory of Zeta integrals, we have

$$\int \phi(h) (\sum_{\xi \in F^n - 0} \Phi(\xi h)) |\det h|_F^s dh = \Phi(s, W, \Phi)$$

$$= L^{S_0}(s, \Pi, \text{Asai}) \times \prod_{v_0 \in S_i} \Psi(s, W_v, \Phi_{v_0}) \prod_{v_0 \in S_s} \Psi(s, W_{v_1}, W_{v_2}, \Phi_{v_0})$$

Taking residue at s = 1, we get

$$c\mathcal{J}(\phi) \int \Phi(x) \ dx = \operatorname{Res}_{s=1} L^{S_0}(s, \Pi, \operatorname{Asai})$$

$$\times \prod_{v_0 \in S_i} \Psi(1, W_v, \Phi_{v_0}) \prod_{v_0 \in S_s} \Psi(1, W_{v_1}, W_{v_2}, \Phi_{v_0})$$

For a suitable constant c', we get

$$c'\mathcal{J}(\phi) = \operatorname{Res}_{s=1} L^{S_0}(s, \Pi, \operatorname{Asai}) \prod_{v_0 \in S_i} \mathcal{J}_{v_0}(W_v) \prod_{v_0 \in S_s} \mathcal{J}_{v_0}(W_{v_1} \otimes W_{v_2})$$

Definition 4.1. We define the relative global Bessel distribution \mathcal{J}_{Π} as follows: if f is a smooth function of compact support, K-finite on both sides, then we set

$$\mathcal{J}_{\Pi}(f) = \sum_{i} \mathcal{J}(\pi(f)v_{i})\overline{\mathcal{W}(v_{i})}$$

Definition 4.2. For $v_0 \in S_i$, we introduce a local relative Bessel distribution \mathcal{B}_{v_0} , if f_{v_0} is K_{v_0} -finite, it is then given by

$$\mathcal{B}_{v_0}(f) = \sum_{\phi} \mathcal{J}_{v_0}(\Pi_{v_0}(f)\phi) \overline{\mathcal{W}_{v_0}(\phi)}$$

Assume $f = f_S f^S$, we then find that the global distribution $\mathcal{J}_{\Pi}(f)$ can be written as

$$\mathcal{J}_{\Pi}(f) = c(\Pi) \prod_{v_0 \in S_0} \mathcal{B}_{v_0}(f_{v_0})$$

5. The discrete part of the trace formula

For any smooth function of compact support, we have

$$J(f) = \sum_{\text{discrete}} J_{\chi}(f) + \sum_{\mu_1} J_{\mu_1}(f)$$

In the first sum, χ appears if it is represented by a pair (M, π) where π is a distinguished representation of M. Explicitly, the possibilities are M = G, M is of type (2,1) and M = A.

6. Conclusion

We are now ready to prove the main result

Theorem 6.1. Any stable tempered packet of cuspidal representations of U contains a globally generic representation.

Proof. The packet has for base change a single irreducible cuspidal representation Π of $GL(3, E_{\mathbb{A}})$. By the results discussed in the second section the representation Π is distinguished. If f and f' have matching integrals, the absolute convergence of the relative trace formula allows us to write

$$J_{\Pi}(f) = \sum_{\pi} J'_{\pi}(f')$$

where the sum is over all the members of the packet. Since the distribution $J_{\Pi}(f)$ is a product of local relative Bessel distributions, we can choose a function f satisfying the simplifying assumption such that the left handside is nonzero, it follows that the right hand side is nonzero and there is at least one π such that $J'_{\pi}(f') \neq 0$, such a π is generic.

Remark 6.2. The same proof applies to the case of an endoscopic packet by considering the discrete, non-cuspidal part of the trace formula.

We can also prove a local result

Theorem 6.3. Let E/F be a local quadratic extension, any tempered L-packet of U(F) contains exactly one generic component.

We have the following corollary

Theorem 6.4. Suppose that π is a cuspidal autormorphic representation of $U(F_{\mathbb{A}})$ such that π_{v_0} is generic for every place v_0 , then π is globally generic.

As a consequence, we get

$$J_{\Pi}(f) = J'_{\pi}(f')$$

in the previous equality.

References

[GJR01] Stephen Gelbart, Hervé Jacquet, and Jonathan Rogawski. Generic representations for the unitary group in three variables. *Israel Journal of Mathematics*, 126(1):173–237, 2001.