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1. Introduction

This is a study note on the paper [LR03] on regularized periods of Eisenstein series in the Galois case, I
am mainly interested in generalizing their local functional equation to more general situation.

Let G be a connected reductive group over a number field F , and let H be the fixed subgroup of an
involution, let ϕ be an automorphic form on G(A), if ϕ is a cusp form, then the following integral converges
and is called the period integral of ϕ relative to H

PH(ϕ) =

∫
H(F )\H(A)∩G(A)1

ϕ(h) dh

we say that ϕ is distinguished by H if PH(ϕ) ̸= 0 and a cuspidal representation (π, V ) is distinguished
by H if there exists a ϕ ∈ V distinguished by H. It is of interest to define PH(ϕ) via regularization for
general automorphic forms for which the integral may not converge. For example, the regularized periods of
Eisenstein series appear in the contribution of the continuous spectrum of Jacquet’s relative trace formula
and the relative trace formula is a key tool for characterizing distinguished cuspidal representations in terms
of Langlands functoriality. The regularized periods are also related to L-functions in many case.

This paper continues the study of regularized period integrals initiated in [JLR99] in a more general
context. We consider the Galois pairs (G, θ), that is G = ResE/FH1, where H1 is a connected reductive
group over F , E/F is a quadratic extension and θ is induced by the Galois involution of E/F . The pair
(G, θ) is said relatively quasi-split if θ stabilizes a minimal parabolic subgroup P0 of G, we assume throughout
the paper that (G, θ) is relatively quasi-split. The symmetric space attached to θ is the variety

C ′ = {ϵ ∈ G : θ(ϵ)ϵ = 1}

Let Hϵ = StabG(ϵ) be the stabilizer of ϵ, Hϵ is a inner form of H1, we consider periods relative to all of
the subgroups Hϵ.

In [JLR99], the regularization of the period integral was introduced for the Galois periods such that
H is split, and an explicit formula for the periods of cuspidal Eisenstein series was obtained in the case
G = GLn,E and H = GLn,F . Our goal is to extend these two results to the groups G and Hϵ, it is
relatively straightforward to adapt the regularization procedure in this setting. However, the combinatorics
and analysis involved in computing the regularized periods of Eisenstein series are more complicated because
some key simplifying features of GLn no longer apply. We rely here a detailed study of the double coset
spaces P (F )\G(F )/Hϵ(F ) for P contains P0 and of twisted conjugation relative to θ in the Weyl group of
G.

Let us fix ϵ0 ∈ C ′ and let us set H̃ = Hϵ0 , the coset space P\G/H̃ is identified with the set of P -orbits
contained in the G-orbit G ∗ ϵ0 in C ′. It is natural to consider the set of all P -orbits in C ′, and suppose
that ϵ belongs to a Bruhat cell P0nP0 where n lies above the element ξ in the Weyl group WG, then ξ is
necessarily a twisted involution that is, it satisfies θ(ξ) = ξ−1. Let J0(θ) be the set of twisted involutions in
WG. Springer introduced a map

ι0 : P0\C ′ → J0(θ)

induced by the map sending ϵ to the twisted involution ξ indexing the Bruhat cell containing ϵ. More
generally, there is a map

ιM : P\C ′ −→ WM\WG/WθM
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we identify WM\WG/WθM with the set of reduced representatives and we say that a P -orbit O lies above
ξ if ιM (O) = ξ. We call ξ admissible if ξθ(M)ξ−1 = M and O admissible if ιM (O) is admissible. The set
of admissible twisted involutions is denoted by JM (θ), any admissible P -orbit above ξ intersects Mξ in at
least one point x and this gives rise to a Galois pair (M, θx).

Consider a cuspidal Eisenstein series E(g, φ, λ) induced from a parabolic subgroup P = MU of G, in the
range of absolute convergence, this is given by

E(g, φ, λ) =
∑

δ∈P\G

φ(δg)e⟨λ,HM (δg)⟩

where φ is a suitable section. A formal computation of the period P H̃(E(φ, λ)) gives

(1.1)

∫
H̃\H̃(A)1

E(h, φ, λ) dh ′ =′
∑
η

∫
H̃P

η \H̃(A)1
φ(ηh)e⟨λ,HM (ηh)⟩ dh

where {η} is a set of representatives for the double cosets P\G/H̃ and H̃P
η = η−1Pη ∩ H. Neither side

of this equation converges, but the left hand side is defined by regularization, on the other hand, many of
the terms on the right hand side are equal to zero. This is true for the nonadmissible cosets for cuspidality
reasons. According to our main result, an admissible coset contributes only if it lies over an admissible
twisted involution ξ such that ξθα = −α for all simple roots α ∈ ∆M . In particular, if there does not exist

any admissible ξ then P H̃(E(φ, λ)) vanishes.
The terms on the right hand side of (1.1) are closely related to the intertwining periods. Fix an admissible

twisted involution ξ ∈ JM (θ), let η ∈ G and suppose that x = η ∗ ϵ0 lies above ξ and satisfies θx(M) = M ,
the intertwining period attached to η is defined as

j(η, φ, λ) =

∫
H̃P

η (A)\H̃(A)

∫
Mx\Mx(AF )1

φ(mηh) dm e⟨λ,HM (ηh)⟩ dh

We show that it converges for λ in a suitable conce and we set

J(ξ, φ, λ) =
∑

ιM (η)=ξ

j(η, φ, λ)

the proof of convergence of j and J relies on a series of reduction steps. The convergence of J(ξ, φ, λ) is

easier to established when G = GLn,E and H̃ = GLn,F , in this case, the sum over η reduces to a single term
and the integral has a majorant that can be transformed into a standard zeta integral whose convergence
properties are well known. In fact J(ξ, φ, λ) itself can be expressed as a ratio of Asai L-functions. In general,
the sum over η is infinite and J is not a factorizable distribution. Therefore it cannot be expressed directly
as a ratio of L-functions. It is likely, however J can be written as a finite sum of factorizable distributions
whose local factors are related to ratios of L-functions. This was shown in the case G = GL3,E and H̃ = U(3)
by applying a stabilization procedure to the sum over η and using the Jacquet-Ye comparison of the relative
trace formula for G relative to H̃ with the Kunznetsov trace formula for GL3,F .

We now state the main result of the paper

Theorem 1.1. Let E(φ, λ) be a cuspidal Eisenstein series induced from a parabolic subgroup P with Levi sub-

group M , let ξ be the longest element in W (θ(M)), if P H̃(E(φ, λ)) is nonzero, then the following conditions
are satisifed

• ξθ(M) = −M and ξθα = −α for all α ∈ ∆M .
• there exists an element x ∈ G ∗ ϵ0 with θx(M) = M lying above ξ such that for some g ∈ G(A), the

cusp form m → φ(mg) on M(A) is distinguished by Mx.

Under these conditions,

P H̃(E(φ, λ)) = J(ξ, φ, λ)

There is a regularization process and it is based on amixed truncation operator ΛT
m defined on automorphic

forms ϕ on G(A). The mixed truncation is a variant of Arthur’s truncation operator ΛT that is well adapted
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to the problem of computing periods. For a sufficiently regular truncation parameter T , ΛT
mϕ is rapidly

decreasing on H̃(A) and the regularized period can be defined in terms of the convergent integral∫
H̃\H̃(A)1

ΛT
mϕ(h) dh

this integral is a polynomial exponential as a function of T . This is equal to
∑

pλ(T )e
⟨λ,T ⟩. Let A0(G) be

the subspace of automorphic forms such that the polynomial p0(T ) corresponding to the zero exponent has
degree at most k. A cuspidal Eisenstein series at a generic parameter lies in A0(G) and for them p0(T ) is a
constant whose value we take as the regularized period.

Our results play a role in analyzing the continuous contribution to the relative trace formula, as mentioned
above, the relative trace formula is a tool for invesgating distinguished representations, one would like to
know for example, that the distinguisehd represnetations arise via base change or some other functorial
transfer from an auxiliary group G′.

2. Galois pairs

Let F be a characteristic zero field, let E/F be a quadratic extension, and let G ∼= ResE/F HE , more
precisely, G is obtained by restriction of scalars of the E-points of H. Let θ be the involution of G defined
by Galois conjugation. It is defined over F . We say that (G, θ) is a Galois pair with respect to E/F .

The symmetric space attached to (G, θ) is the variety

C ′ = {ϵ ∈ G : θ(ϵ) = ϵ−1}

the natural action of G on C′ is denoted by ∗

g ∗ x = gxθ(g)−1

Definition 2.1. The Galois pair (G, θ) is called relatively quasisplit if θ stabilizes a minimal parabolic P0

of G.

We assume that (G, θ) is relatively quasisplit. In this case, P0 admits a θ-stable Levi decomposition
P0 = M0U0.

3. Twisted involutions

In this section, we consider an involution σ acting on the vector space a0 and preserving the set of simple
roots ∆0. Any involution of G fixing a minimal pair (P0,M0) induces such an action.

The Weyl group W acts on J0(σ) by twisted conjugation, we denote this action by ∗ so that

ω ∗ ξ = ωξσ(ω)−1

Definition 3.1. Suppose that D ∈ WM\W/WσM satisfies σ(D) = D−1, and let ξ be the reduced represen-
tative for D, then D or ξ is called an admissible twisted involution if ξ ∈ W (σM,M), that if ξσ(M) = M ,
the set of admissible twisted involutions is denoted by JM (σ).

Definition 3.2. An admissible twisted involution ξ ∈ JM (σ) is called minimal if there exists a σ-stable
Levi subgroup L with M ⊂ L such that ξ = ωL

σM and ξσα = −α for all α ∈ ∆L
M . In this case, L is uniquely

determined by ξ and is denoted by Lξ,σ. Let χM (σ) denote the set of minimal twisted involutions in JM (σ).

We can define a weighted directed graph G to an associate class M of Levi subgroups. The vertices of G
are the pairs (M, ξ) with M ∈ M and ξ ∈ JM (σ). The set of edges connecting (M1, ξ1), (M2, ξ2) is the set
of α ∈ ∆M1 such that sαM1s

−1
α = M2, ξ2 = sα ∗ ξ1 and ξ1(σα) ̸= α. Let G0 be the subgraph with the same

set of vertices but where we retain only those edges for which ξ1σ(α) ̸= ±α.
The following is a useful characterization of the sets W (ξ, ξ′) and W 0(ξ, ξ′). To each path

ξ1
α1 // ξ2

α2 // · · ·
αn−1

// ξn

Let W (ξ1, ξ2) be the set of words defined by paths from ξ1 to ξ2. Let W
0(ξ1, ξ2) be the set of words arising

from paths contained in G0.
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Proposition 3.3. Every ξ ∈ JM (σ) is twisted conjugate to a minimal twisted involution. In fact, there
exists ξ′ ∈ χM ′(σ) such that ω ∗ ξ = ξ′ with ω ∈ W 0(ξ, ξ′).

Proposition 3.4. With the above notation and assumptions, we have

• ω ∈ W (M ′) and M ′
1 = ωM ′ω−1 is a Levi subgroup of L.

• ξ′1 = ω ∗ ξ′ belongs to JM ′
1
(σ).

• s′ ∈ WL(M1).
• ω belongs to W 0(ξ′, ξ′1).

thus we have a commutative diagram

ξ
ω //

sα

��

ξ1

s′

��

ξ′
ω // ξ′1

4. Double cosets

We assume that (G, θ) is relatively quasisplit. Our goal in this section is to analyze the P0-orbits in C ′.
If ϵ ∈ C ′, then the P0-orbit O = P0 ∗ ϵ is contained in the double coset P0ϵP0, we define a map

ι0 : P0\C ′ → W

by sending O = P0 ∗ ϵ to the element ξ ∈ W corresponding to P0ϵP0 in the Bruhat decomposition. If
ι0(O) = ξ, then we say O lies above ξ.

Lemma 4.1. Each P0-orbit in C ′ intersects NG(T0).

Proposition 4.2. The map

O → O ∩NG(T0)

defines a bijection between the set of P0-orbits in C ′ and the set of M0-orbits in C ′ ∩NG(T0).

Proposition 4.3. The image of ι0 is all of J0(θ).

5. Intertwining periods

5.1. Definition of intertwining periods. These functionals play a role in the relative trace forula anal-
ogous to that of the intertwining operators in the ordinary trace formula. Let φ ∈ A 1

P (G), recall H̃ is the
stabilizer of a point ϵ0 ∈ C ′ in G.

Recall that the admissible P -orbits of C ′ above ξ are in one-to-one correspondence with the M -orbits in
C ′ ∩Mξ. Let O be an M -orbit in C ′ ∩Mξ, choose any x ∈ O and a Haar measure on Mx(A)1, then the
period integral

PMx(φ)(g) =

∫
Mx\Mx(A)1

φ(mg) dm

is well defined. Let η be chosen so that x = η ∗ ϵ0, the intertwining period is defined by

j(O, φ, λ) =

∫
H̃P

η (A)\H̃(A)
PMx(φ)(ηh)e⟨λ,HM (ηh)⟩ dh

We set

J(ξ, φ, λ) =
∑

O⊂C∩Mξ

j(O, φ, λ)
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6. Functional equations

We have the simple functional equations

Proposition 6.1. Let ξ ∈ JM (θ), let O ⊂ C ∩ Mξ, and let α ∈ ∆M with −α ̸= ξ(θα) < 0, then for
φ ∈ A 1

P (G) and λ ∈ Dξ, we have

J(sα ∗ ξ,M(sα, λ)φ, sαλ) = J(ξ, φ, λ)

this is because the intertwining operators for sα ∗ O and O differ by a unipotent integral which is given
by a standard intertwining operator.

Theorem 6.2. Let ξ ∈ JM (θ) and let φ ∈ A 1
P (G)c, then

• J(ξ, φ, λ) extends to a meromorphic function on ((aGM,C)
∗)−ξθ.

• If ξ′ ∈ JM ′(θ) and s ∈ W (ξ, ξ′), we have

J(ξ′,M(s, λ)φ, sλ) = J(ξ, φ, λ)

Proof. From the previous proposition 6.1, it remains to prove the functional equations in the case ξ(θα) = −α.
Let the notation as in proposition 3.4.3, we have the commutative diagram

ξ
ω //

sα

��

ξ1

s′

��

ξ′
ω // ξ′1

Since s′ ∈ WLξ1,θ
(M1), we get

J(ξ1, φ
′, λ′) = J(s′ ∗ ξ1,M(s′, λ′)φ′, s′λ′)

together with the functional equation for ω ∈ W 0(ξ, ξ1), we get

J(ξ, φ, λ) = J(ξ1,M(ω, λ)φ, ωλ) = J(s′ ∗ ξ1,M(s′ω, λ)φ, s′ωλ)

Also by proposition 3.4.3, ω ∈ W 0(ξ′, ξ′1), so that

J(ξ′,M(sα, λ)φ, sαλ) = J(ξ′1,M(ωsα, λ)φ, ωsαλ)

all together, we get
J(ξ′,M(s, λ)φ, sλ) = J(ξ, φ, λ)

□
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