FOURIER TRANSFORM ON BASIC AFFINE SPACE

1. INTRODUCTION

This is a study note for Gourvich-Kazhdan papers on the construction of Fourier transform on basic affine space for quasisplit groups, [GK23], [GK19]. Their main result is

Theorem 1.1. Let G be a quasisplit group, B = TU the Borel subgroup, then there exists unique family of unitary operators Φ_w , $w \in W$ on $L^2(X, \omega_X)$ preserves $S_0(X)$ and satisfying

- $\Phi_{\omega} \circ \theta(g, t^{\omega}) = \theta(g, t) \circ \Phi_{\omega}$, for all $\omega \in W$, $t \in T$, $g \in G$.
- Φ_{ω1}Φ_{ω2} = Φ_{ω1ω2}.
 κ_Ψ(Φ_ω)(φ) = ω · φ for all ω ∈ W, φ ∈ S₀(T).

The space $S_0(X)$ and the Fourier transform $\Phi_{\omega_{\alpha}}$ for ω_{α} a simple reflection are defined for the rank one groups and then for the general groups.

2. Minimal representation of O(8)

We review the minimal representation of O(8) and its relation with the Fourier transform on the basic affine space for SU_3 .

Let F be a non-archimedean local field, with \mathcal{O}_F ring of integers. Let (V,q) be a non-degenerate quadratic space of dimension 2n+2 $n \geq 3$ and the Witt index at least n over F. We fix the decomposition $V = \mathbb{H} \oplus V_1$ where \mathbb{H} is a hyperbolic plane and V_1 is a non-degenerate quadratic space of dimension 2n. The group G = O(V,q) is quasisplit and it contains a maximal parabolic subgroup Q = MN, where M is canonically isomorphic to $GL_1 \times O(V_1)$, we denote $\langle \cdot, \cdot \rangle : N \times \overline{N} \to F$ the non-degenerate pairing given by the Killing form, fix a basis $\{e, e^*\}$ in \mathbb{H} of isotropic vectors such that $\langle e, e^* \rangle = 1$ and N fixes the vector e^* . This gives an isomorphism $\varphi: \overline{N} \cong V_1, \ \varphi(\overline{n}) = \operatorname{proj}_{V_1}(\overline{n}e^*)$, where \overline{N} is the radical of the opposite parabolic \overline{Q} .

Denote by $C \subset \overline{N}$ the cone of isotropic vectors in V_1 , the group $G_1 = O(V_1)$ acts transitively on $C_0 =$ $C \setminus \{0\}$, we define an action of Q on the space $S^{\infty}(C_0)$ of smooth functions on C_0 by

$$(a,h) \cdot f(\omega) = \chi_K(a) |a|^{n-1} f(a\omega h) \ a \in GL_1, \ h \in O(V_1)$$
$$n \cdot f(\omega) = \psi(-\langle n, \omega \rangle) f(\omega) \ n \in N$$

The normalized principal series $\operatorname{Ind}_Q^G \chi_K |\cdot|^{-1}$ contains a unique irreducible representation, we denote by Π , we can show Π is a minimal representation of G. The pairing

$$\langle \cdot, \cdot \rangle : \overline{I}_{2n+2}(\chi_K | \cdot |) \times \overline{I}_{2n+2}(\chi_K | \cdot |^{-1}) \to \mathbb{C}$$

reduces to a non-degenerate pairing $\Pi \times S_c$. This implies that Π is embedded into a Q-smooth dual of S_c that can be described as a space S of smooth functions.

Theorem 2.1. We have the followings hold

- There exists a Q equivariant embedding $\Pi \hookrightarrow S^{\infty}(C_0)$, we denote the image by S.
- The space S contains the space $S_c(C_0)$ of smooth functions of compact support and is contained in the space of smooth functions of bounded support.

Let $Y \subset C_0 \subset V_1$, for each $\omega \in C_0$ we can define a map

$$\varphi_{\omega}: C_0 \longrightarrow F, \ \varphi_{\omega}(v) = \langle v, \omega \rangle$$

and let $Y_{\omega}(t)$ be the fiber over t. For any $\omega \in C_0$, we can consider a family of distributions $\mathcal{R}_{\omega}(t)$ on $S_c(C_{\omega}^{sm})$, defined by

$$\mathcal{R}_{\omega}(t)(f) = \int_{Y_{\omega} \text{sm}} f(t)\omega_{\omega,t}f(v),$$

The normalized Radon transform $\hat{\mathcal{R}}: S_c \to S^{\infty}$ is defined by

$$\hat{\mathcal{R}}(f)(\omega) = \mathcal{R}(t)(f)(\omega)\psi(t)$$

Definition 2.2. For any $f \in S_c$ define for $\omega \in C_0$

$$\Phi(f)(\omega) = \gamma(\chi_K, \psi) \int_{F^{\times}} \hat{\mathcal{R}}(f)(x\omega)\psi(x^{-1})\chi_K(-x)|x|^{n-2} d^{\times}x$$

We have the following operator $\Pi(r) \in \operatorname{Aut}(S)$, where $r \in O(V)$ is the involutive element

$$r(e) = e^*, \ r(e^*) = e, \ r|_{V_1} = \mathrm{Id}$$

the operator $\Pi(r)$ is a unitary involution on commuting with $O(V_1)$ and is called the Fourier transform on the cone as we have the following result

Theorem 2.3. The restriction of $\Pi(r)$ to S_c is equal to Φ .

The idea of the proof is as follows: Recall we have the decomposition $V = \mathbb{H} \oplus \mathbb{H} \oplus V_2$ and the basis $\{e_1, e_1^*\}, \{e_2, e_2^*\}$ for the first and second copy of \mathbb{H} , we define two involutions $r_1, r_2 \in \mathcal{O}(V)$ such that

$$r_1(e_1) = e_2, r_1(e_2) = e_1, r_1|_{V_2} = \mathrm{Id}$$

 $r_2(e_1) = e_1, r_2(e_1^*) = e_2^*, r_2|_{V_2} = \mathrm{Id}$

then we can show that $r = r_1 \cdot r_2 \cdot r_1$, and note $r_2 \in M$, we have the formula for $\Pi(r)$.

We have a formula for the action of $\Pi(r_1)$ on a subspace of S_c , we will use a mixed model for the minimal representation realized on a space of functions on $F^{\times} \times V$, the map

 $F^{\times} \times V_2 \hookrightarrow C_0, \ (y,\omega) \mapsto (-y,\omega,q(\omega)/y)$

we denote by C_0^1 its image, this gives rise to a *G*-equivariant isomorphism

$$L^2(C_0) \longrightarrow L^2(F \times V_2)$$

Proposition 2.4. The operator $\Pi(r_1)$ preserves $S_c(C_0^1)$ and the action is given by

$$\Pi(r_1)(f)(y,\omega,-q(\omega)/y) = \gamma(\chi_K,\psi) \int_{V_2} (-y) \cdot f(1,u)\psi(\langle u,v\rangle) \ du$$

Proof. Note that for P = LU the Heisenberg parabolic subgroup of G, the unipotent radical is isomorphic to the symplectic space $W \otimes V_2$, and let P' be the derived subgroup of P, there is an explicit description of the action of P' on $\omega_{\psi,q}$.

Then this proposition follows from the isomorphism

$$\beta: \operatorname{ind}_{P'}^P \omega_{\psi,q} = \operatorname{ind}_{P'}^P (S_c(V_2)) \cong S_c(F^{\times} \times V_2)$$

and the fomula for r_1

$$r_1(f)(y,\omega) = \gamma(\chi_K,\psi) \int_{V_2} t^{-y} \cdot f(1,u)\psi(\langle u,v\rangle) \ du$$

3. $G = SL_2$

In this section, We will review the Fourier transform on basic affine space for $G = SL_2$.

Let F be a non archimedean local field and let $(V, \langle \cdot, \cdot \rangle)$ be a symplectic vector space over F with basis vectors e_1, e_2 and $\langle e_1, e_2 \rangle = 1$. G acts on right with B = TU stabilizing $Fe_2, X = U \setminus G$ can be identified with $V - \{0\}$ via $[g] \mapsto e_2 \cdot g$. $\Phi \in \operatorname{Aut}(S_c(V))$ is defined as

$$\Phi(f)(\omega) = \int_V f(v)\psi(\langle \omega, v \rangle) \, dv$$

Proposition 3.1. We have

- Φ extends to a unitary involution on $L^2(X, \omega_X)$.
- $\theta(g,t) \circ \Phi = \Phi \circ \theta(g,t^{-1}).$

4.
$$G = SU_3$$

Let K be a quadratic extension of F with Galois involution $x \mapsto \overline{x}$, $|x|_K = |\operatorname{Nm}(x)|_F$, $\tau \in \mathcal{O}_F$ such that $\mathcal{O}_K = \mathcal{O}_F + \sqrt{\tau}\mathcal{O}_F$.

K admits a quadratic form $x \mapsto \operatorname{Nm}(x)$ and the associated bilinear form on K is $(x, y) \mapsto \operatorname{Tr}(x\overline{y})$. $W = K^3$, (W, h) the Hermitian spaces with Hermitian form

$$h(v_1, v_2) = x_1\overline{z_2} + z_1\overline{x_2} + y_1\overline{y_2}$$

with $v_i = (x_i, y_i, z_i)$. G = SU(W, h) acts on the right, B = TU preserving the line K(0, 0, 1), $X = U \setminus G$ is identified with W^0 of h-isotropic non-zero vectors in W. $\langle v_1, v_2 \rangle = \text{Tr } h(v_1, v_2)$ F-bilinear form. (V_K, q_K) is isomorphic to (W, q).

Recall that X can be identified with the W^0 of non-zero isotropic vectors in W, for any vector $\omega \in W^0 = X$ we consider

$$p_{\omega}: W^0 \longrightarrow F, \ p_{\omega}(v) = \langle v, \omega \rangle$$

the measure ω_X and the measure dx on F give rise to a measure $\omega_{\omega,a}$ on the fiber $p_{\omega}^{-1}(a)$ for any $a \in F$. For any $a \in F$ we define the Radon transform $\mathcal{R}(a) : S_c(X) \to S^{\infty}(X)$ by

$$\mathcal{R}(a)(f)(\omega) = \int_{p_{\omega}^{-1}(a)} f(v)\omega_{\omega,a}(v)$$

The normalized Radon transform on $S_c(X)$ is defined by

$$\hat{\mathcal{R}}(f)(\omega) = \int_{F} \mathcal{R}(a)(f)(\omega)\psi(a) \, da$$

Definition 4.1. We define the Fourier transform $\Phi: S_c(X) \to S^{\infty}(X)$

$$\Phi(f)(\cdot) = \int_{F^{\times}} \theta(t(x))\hat{R}(f)(\cdot)\psi(x^{-1})\chi_K(x)|x|^{-1} d^{\times}x$$

Proposition 4.2. For $f \in S_0(X)$, we have

$$\Phi(f)(\omega) = \int_X f(v) \mathscr{L}(\langle v, \omega \rangle) \ \omega_X(v)$$

where for $a \in F^{\times}$

$$\mathscr{L}(a) = \gamma(\chi_K, h) \int_{F^{\times}} \psi(ax + x^{-1})\chi_K(-x)|x| \ d^{\times}x$$

References

- [GK19] Nadya Gurevich and David Kazhdan. Fourier transforms on the basic affine space of a quasi-split group. arXiv preprint arXiv:1912.07071, 2019.
- [GK23] Nadya Gurevich and David Kazhdan. Fourier transform on a cone and the minimal representation of even orthogonal group. arXiv preprint arXiv:2304.13993, 2023.