FOURIER TRANSFORM ON BASIC AFFINE SPACE

1. Introduction

This is a study note for Gourvich-Kazhdan papers on the construction of Fourier transform on basic affine space for quasisplit groups, GK23, GK19. Their main result is

Theorem 1.1. Let G be a quasisplit group, $B=T U$ the Borel subgroup, then there exists unique family of unitary operators $\Phi_{w}, w \in W$ on $L^{2}\left(X, \omega_{X}\right)$ preserves $S_{0}(X)$ and satisfying

- $\Phi_{\omega} \circ \theta\left(g, t^{\omega}\right)=\theta(g, t) \circ \Phi_{\omega}$, for all $\omega \in W, t \in T, g \in G$.
- $\Phi_{\omega_{1}} \Phi_{\omega_{2}}=\Phi_{\omega_{1} \omega_{2}}$.
- $\kappa_{\Psi}\left(\Phi_{\omega}\right)(\varphi)=\omega \cdot \varphi$ for all $\omega \in W, \varphi \in S_{0}(T)$.

The space $S_{0}(X)$ and the Fourier transform $\Phi_{\omega_{\alpha}}$ for ω_{α} a simple reflection are defined for the rank one groups and then for the general groups.

2. Minimal representation of $O(8)$

We review the minimal representation of $O(8)$ and its relation with the Fourier transform on the basic affine space for SU_{3}.

Let F be a non-archimedean local field, with \mathcal{O}_{F} ring of integers. Let (V, q) be a non-degenerate quadratic space of dimension $2 n+2 n \geq 3$ and the Witt index at least n over F. We fix the decomposition $V=\mathbb{H} \oplus V_{1}$ where \mathbb{H} is a hyperbolic plane and V_{1} is a non-degenerate quadratic space of dimension $2 n$. The group $G=O(V, q)$ is quasisplit and it contains a maximal parabolic subgroup $Q=M N$, where M is canonically isomorphic to $G L_{1} \times O\left(V_{1}\right)$, we denote $\langle\cdot, \cdot\rangle: N \times \bar{N} \rightarrow F$ the non-degenerate pairing given by the Killing form, fix a basis $\left\{e, e^{*}\right\}$ in \mathbb{H} of isotropic vectors such that $\left\langle e, e^{*}\right\rangle=1$ and N fixes the vector e^{*}. This gives an isomorphism $\varphi: \bar{N} \cong V_{1}, \varphi(\bar{n})=\operatorname{proj}_{V_{1}}\left(\bar{n} e^{*}\right)$, where \bar{N} is the radical of the opposite parabolic \bar{Q}.

Denote by $C \subset \bar{N}$ the cone of isotropic vectors in V_{1}, the group $G_{1}=O\left(V_{1}\right)$ acts transitively on $C_{0}=$ $C \backslash\{0\}$, we define an action of Q on the space $S^{\infty}\left(C_{0}\right)$ of smooth functions on C_{0} by

$$
\begin{aligned}
(a, h) \cdot f(\omega) & =\chi_{K}(a)|a|^{n-1} f(a \omega h) a \in G L_{1}, h \in O\left(V_{1}\right) \\
n \cdot f(\omega) & =\psi(-\langle n, \omega\rangle) f(\omega) n \in N
\end{aligned}
$$

The normalized principal series $\operatorname{Ind}_{Q}^{G} \chi_{K}|\cdot|^{-1}$ contains a unique irreducible representation, we denote by Π, we can show Π is a minimal representation of G. The pairing

$$
\langle\cdot, \cdot\rangle: \bar{I}_{2 n+2}\left(\chi_{K}|\cdot|\right) \times \bar{I}_{2 n+2}\left(\chi_{K}|\cdot|^{-1}\right) \rightarrow \mathbb{C}
$$

reduces to a non-degenerate pairing $\Pi \times S_{c}$. This implies that Π is embedded into a \mathbb{Q}-smooth dual of S_{c} that can be described as a space S of smooth functions.

Theorem 2.1. We have the followings hold

- There exists a Q equivariant embedding $\Pi \hookrightarrow S^{\infty}\left(C_{0}\right)$, we denote the image by S.
- The space S contains the space $S_{c}\left(C_{0}\right)$ of smooth functions of compact support and is contained in the space of smooth functions of bounded support.

Let $Y \subset C_{0} \subset V_{1}$, for each $\omega \in C_{0}$ we can define a map

$$
\varphi_{\omega}: C_{0} \longrightarrow F, \varphi_{\omega}(v)=\langle v, \omega\rangle
$$

and let $Y_{\omega}(t)$ be the fiber over t. For any $\omega \in C_{0}$, we can consider a family of distributions $\mathcal{R}_{\omega}(t)$ on $S_{c}\left(C_{\omega}^{\mathrm{sm}}\right)$, defined by

$$
\mathcal{R}_{\omega}(t)(f)=\int_{\substack{Y_{\omega} \mathrm{sm} \\ 1}} f(t) \omega_{\omega, t} f(v)
$$

The normalized Radon transform $\hat{\mathcal{R}}: S_{c} \rightarrow S^{\infty}$ is defined by

$$
\hat{\mathcal{R}}(f)(\omega)=\mathcal{R}(t)(f)(\omega) \psi(t)
$$

Definition 2.2. For any $f \in S_{c}$ define for $\omega \in C_{0}$

$$
\Phi(f)(\omega)=\gamma\left(\chi_{K}, \psi\right) \int_{F^{\times}} \hat{\mathcal{R}}(f)(x \omega) \psi\left(x^{-1}\right) \chi_{K}(-x)|x|^{n-2} d^{\times} x
$$

We have the following operator $\Pi(r) \in \operatorname{Aut}(S)$, where $r \in O(V)$ is the involutive element

$$
r(e)=e^{*}, r\left(e^{*}\right)=e,\left.r\right|_{V_{1}}=\mathrm{Id}
$$

the operator $\Pi(r)$ is a unitary involution on commuting with $O\left(V_{1}\right)$ and is called the Fourier transform on the cone as we have the following result

Theorem 2.3. The restriction of $\Pi(r)$ to S_{c} is equal to Φ.
The idea of the proof is as follows: Recall we have the decomposition $V=\mathbb{H} \oplus \mathbb{H} \oplus V_{2}$ and the basis $\left\{e_{1}, e_{1}^{*}\right\},\left\{e_{2}, e_{2}^{*}\right\}$ for the first and second copy of \mathbb{H}, we define two involutions $r_{1}, r_{2} \in \mathcal{O}(V)$ such that

$$
\begin{aligned}
& r_{1}\left(e_{1}\right)=e_{2}, r_{1}\left(e_{2}\right)=e_{1},\left.r_{1}\right|_{V_{2}}=\mathrm{Id} \\
& r_{2}\left(e_{1}\right)=e_{1}, r_{2}\left(e_{1}^{*}\right)=e_{2}^{*},\left.r_{2}\right|_{V_{2}}=\mathrm{Id}
\end{aligned}
$$

then we can show that $r=r_{1} \cdot r_{2} \cdot r_{1}$, and note $r_{2} \in M$, we have the formula for $\Pi(r)$.
We have a formula for the action of $\Pi\left(r_{1}\right)$ on a subspace of S_{c}, we will use a mixed model for the minimal representation realized on a space of functions on $F^{\times} \times V$, the map

$$
F^{\times} \times V_{2} \hookrightarrow C_{0}, \quad(y, \omega) \mapsto(-y, \omega, q(\omega) / y)
$$

we denote by C_{0}^{1} its image, this gives rise to a G-equivariant isomorphism

$$
L^{2}\left(C_{0}\right) \longrightarrow L^{2}\left(F \times V_{2}\right)
$$

Proposition 2.4. The operator $\Pi\left(r_{1}\right)$ preserves $S_{c}\left(C_{0}^{1}\right)$ and the action is given by

$$
\Pi\left(r_{1}\right)(f)(y, \omega,-q(\omega) / y)=\gamma\left(\chi_{K}, \psi\right) \int_{V_{2}}(-y) \cdot f(1, u) \psi(\langle u, v\rangle) d u
$$

Proof. Note that for $P=L U$ the Heisenberg parabolic subgroup of G, the unipotent radical is isomorphic to the symplectic space $W \otimes V_{2}$, and let P^{\prime} be the derived subgroup of P, there is an explicit description of the action of P^{\prime} on $\omega_{\psi, q}$.

Then this proposition follows from the isomorphism

$$
\beta: \operatorname{ind}_{P^{\prime}}^{P} \omega_{\psi, q}=\operatorname{ind}_{P^{\prime}}^{P}\left(S_{c}\left(V_{2}\right)\right) \cong S_{c}\left(F^{\times} \times V_{2}\right)
$$

and the fomula for r_{1}

$$
r_{1}(f)(y, \omega)=\gamma\left(\chi_{K}, \psi\right) \int_{V_{2}} t^{-y} \cdot f(1, u) \psi(\langle u, v\rangle) d u
$$

3. $G=S L_{2}$

In this section, We will review the Fourier transfrom on basic affine space for $G=S L_{2}$.
Let F be a non archimedean local field and let $(V,\langle\cdot, \cdot\rangle)$ be a symplectic vector space over F with basis vectors e_{1}, e_{2} and $\left\langle e_{1}, e_{2}\right\rangle=1$. G acts on right with $B=T U$ stabilizing $F e_{2}, X=U \backslash G$ can be identified with $V-\{0\}$ via $[g] \mapsto e_{2} \cdot g . \Phi \in \operatorname{Aut}\left(S_{c}(V)\right)$ is defined as

$$
\Phi(f)(\omega)=\int_{V} f(v) \psi(\langle\omega, v\rangle) d v
$$

Proposition 3.1. We have

- Φ extends to a unitary involution on $L^{2}\left(X, \omega_{X}\right)$.
- $\theta(g, t) \circ \Phi=\Phi \circ \theta\left(g, t^{-1}\right)$.

$$
\text { 4. } G=S U_{3}
$$

Let K be a quadratic extension of F with Galois involution $x \mapsto \bar{x},|x|_{K}=|\operatorname{Nm}(x)|_{F}, \tau \in \mathcal{O}_{F}$ such that $\mathcal{O}_{K}=\mathcal{O}_{F}+\sqrt{\tau} \mathcal{O}_{F}$.
K admits a quadratic form $x \mapsto \operatorname{Nm}(x)$ and the associated bilinear form on K is $(x, y) \mapsto \operatorname{Tr}(x \bar{y})$. $W=K^{3},(W, h)$ the Hermitian spaces with Hermitian form

$$
h\left(v_{1}, v_{2}\right)=x_{1} \overline{z_{2}}+z_{1} \overline{x_{2}}+y_{1} \overline{y_{2}}
$$

with $v_{i}=\left(x_{i}, y_{i}, z_{i}\right) . G=S U(W, h)$ acts on the right, $B=T U$ preserving the line $K(0,0,1), X=U \backslash G$ is identified with W^{0} of h-isotropic non-zero vectors in $W .\left\langle v_{1}, v_{2}\right\rangle=\operatorname{Tr} h\left(v_{1}, v_{2}\right) F$-bilinear form. (V_{K}, q_{K}) is isomorphic to (W, q).

Recall that X can be identified with the W^{0} of non-zero isotropic vectors in W, for any vector $\omega \in W^{0}=X$ we consider

$$
p_{\omega}: W^{0} \longrightarrow F, p_{\omega}(v)=\langle v, \omega\rangle
$$

the measure ω_{X} and the measure $d x$ on F give rise to a measure $\omega_{\omega, a}$ on the fiber $p_{\omega}^{-1}(a)$ for any $a \in F$. For any $a \in F$ we define the Radon transform $\mathcal{R}(a): S_{c}(X) \rightarrow S^{\infty}(X)$ by

$$
\mathcal{R}(a)(f)(\omega)=\int_{p_{\omega}^{-1}(a)} f(v) \omega_{\omega, a}(v)
$$

The normalized Radon transform on $S_{c}(X)$ is defined by

$$
\hat{\mathcal{R}}(f)(\omega)=\int_{F} \mathcal{R}(a)(f)(\omega) \psi(a) d a
$$

Definition 4.1. We define the Fourier transform $\Phi: S_{c}(X) \rightarrow S^{\infty}(X)$

$$
\Phi(f)(\cdot)=\int_{F^{\times}} \theta(t(x)) \hat{R}(f)(\cdot) \psi\left(x^{-1}\right) \chi_{K}(x)|x|^{-1} d^{\times} x
$$

Proposition 4.2. For $f \in S_{0}(X)$, we have

$$
\Phi(f)(\omega)=\int_{X} f(v) \mathscr{L}(\langle v, \omega\rangle) \omega_{X}(v)
$$

where for $a \in F^{\times}$

$$
\mathscr{L}(a)=\gamma\left(\chi_{K}, h\right) \int_{F^{\times}} \psi\left(a x+x^{-1}\right) \chi_{K}(-x)|x| d^{\times} x
$$

References

[GK19] Nadya Gurevich and David Kazhdan. Fourier transforms on the basic affine space of a quasi-split group. arXiv preprint arXiv:1912.07071, 2019.
[GK23] Nadya Gurevich and David Kazhdan. Fourier transform on a cone and the minimal representation of even orthogonal group. arXiv preprint arXiv:2304.13993, 2023.

