FACTORIZATION OF PERIOD INTEGRALS

RUI CHEN

1. INTRODUCTION

This is my study note for Jacquet's paper [Jac01] and Lapid-Rogawski paper [LR00] for the Galois pair (Res GL_3, U_3), since there is no local multiplicity one result, the factorization of the global period 2.2 is not formal.

2. Global result

2.1. The relative trace formula. We will recall the relative trace formula of [JY96], the main theorem on cuspidal automorphic representations will be a consequence of this.

Let E/F be a quadratic extension of number fields, we will denote σ the non-trivial element of the Galois group for E/F, let H_0 be the 3×3 unitary group. We let Π be a cuapidal automorphic representation of $GL(3, E_{\mathbb{A}})$.

We say Π is *distinguished* by H_0 if the period integral

$$\mathscr{P}(\phi) := \int_{H_0(F) \setminus H_0(F_{\mathbb{A}})} \phi(h) \ dh$$

doesn't vanish. If Π is distinguished, then we have Π^{σ} is equivalent to Π for $\Pi^{\sigma}(g) = \Pi(g^{\sigma})$. Moreover we have the following characterization of the local place v_0 of F inert in E: let v be the corresponding place of E and $\mathscr{H}_{v_0}(\Pi_v, H_{0,v})$ be the space of linear forms on the space $\mathscr{V}(\Pi_v)$ of smooth vectors of Π_v which is invariant under H_{0,v_0} , then $\mathscr{H}_{v_0} \neq 0$. If v_0 is a place of F which splits into v_1 and v_2 in E and let $\mathscr{H}_{v_0} = \mathscr{H}(\Pi_{v_1} \otimes \Pi_{v_2}, H_{0,v_0})$ be the space of linear forms on the space $\mathscr{V}(\Pi_{v_1} \otimes \Pi_{v_2})$ of smooth vectors for the tensor product $\Pi_{v_1} \otimes \Pi_{v_2}$ which are invariant under $H_0 \cong (g_{v_1}, g_{v_2}), g_{v_1} = {}^tg_{v_2}{}^{-1}, g_{v_1} \in GL(3, F_{v_0}),$ then \mathscr{H}_{v_0} is of dimension one.

Let S_0 be a finite set of places of F contains all the places at infinity, the even places and the places ramify in E. Let S_i be the set of places in S_0 which are inert in E and let S_s be the split places. S the set of places of E over a place of S_0 , we assume Π is distinguished and unramify outside S.

For ψ a nontrivial character of $F_{\mathbb{A}}/F$ and $\psi_E(z) = \psi(z + \overline{z})$, we denote N the group of upper triangular matrices and θ the character of $N(F_{\mathbb{A}})$ defined by $\theta(n) = \psi(n_{1,2} + n_{2,3})$, similarly a character θ with $\theta(n) \mapsto \psi_E(n_{1,2} + n_{2,3})$ on $N(E_{\mathbb{A}})$. For $\phi \in \mathcal{V}(\Pi)$, we define

$$\mathscr{W}(\phi) = \int_{N(E)\setminus N(E_{\mathbb{A}})} \phi(n)\theta^{-1}(n\overline{n}) \ dn$$

set $W(g) = \mathscr{W}(\Pi(g)\phi)$.

We let F^+ be the set of elements of F^{\times} which are norm of an element of E^{\times} . We let \mathfrak{S} be the Hermitian matrices in GL(3, E) and $\mathfrak{S}^+(F)$ the set of elements in $\mathfrak{S}(F)$ with determinant in F^+ .

If f_v is a function of compact support on $GL(3, E_v)$ and Φ_{v_0} the function on $\mathfrak{S}_{v_0}^+$ defined by

$$\Phi_{v_0}(g_v^t \overline{g}_v) = \int f_v(g_v h_{v_0}) \ dh_{v_0}$$

Date: February 2024.

To functions f and f' we can attach kernels

$$K_f(x,y) = \int_{E_{\mathbb{A}}^{\times}/E^{\times}} \sum_{\xi \in GL(3,E)} f(x^{-1}\xi zy)\Omega(z) \, dz$$
$$K_{f'}(x,y) = \int_{F_{\mathbb{A}}^{+}/F^{+}} \sum_{\xi \in G^{+}(F)} f'(x^{-1}\xi zy)\Omega(z) \, dz$$

Then we have

$$J(\Phi) = \int_{N(E)\backslash N(E_{\mathbb{A}})\times H(F)\backslash H(F_{\mathbb{A}})} K_f(n,h)\theta^{-1}(n\overline{n}) \, dn \, dh$$
$$J'(f') = \int_{N(F)\backslash N(F_{\mathbb{A}})\times N(F)\backslash N(F_{\mathbb{A}})} K_{f'}(n_1,n_2^t)\theta^{-1}(n_1)\theta(n_2) \, dn_2$$

We have a notion of *matching orbital integrals*, and for Φ and f' with matching integral $J(\Phi) = J'(f')$. It follows that we have an identity of integral of kernels attached to π and its base change.

We let π be a cuspidal automorphic representation of $GL(3, F_{\mathbb{A}})$ and let Π be its base change, for K_f^{Π} and K_f^{π} the kernels attached to the representations Π and π we have

$$K_f^{\Pi}(x,y) = \sum \Pi(f)\phi_i(x)\overline{\phi_i(y)}$$
$$K_{f'}^{\pi}(x,y) = \sum \pi(f')\phi_i'(x)\overline{\phi_i'(y)}$$

where the sum runs over the orthogonal basis of $\mathscr{V}(\Pi)$ and $\mathscr{V}(\pi)$.

Using the Whittaker functional \mathscr{W} and the period integral \mathscr{P}, K_f^{Π} can be written as

$$\sum_{\phi_i} \mathscr{W}(\Pi(f)\phi_i)\overline{\mathscr{P}(\phi_i)}$$

similarly K_f^{π} can be written as

$$\sum_{\phi'_i} \mathscr{W}'(\pi(f')\phi'_i) \overline{\mathscr{W}'(\pi(\omega)\phi'_i)}$$

We can obtain

Proposition 2.1. We have

$$\sum_{\phi_i} \mathscr{W}(\Pi(f)\phi_i)\overline{\mathscr{P}(\phi_i)} = \sum_{\phi'_i} \mathscr{W}'(\pi(f')\phi'_i)\overline{\mathscr{W}'(\pi(\omega)\phi'_i)}$$

whenever f and f' have matching orbital integrals.

2.2. Main result for cuspidal automorphic representations.

Theorem 2.2. There exist a constant $c \neq 0$ and for each $v_0 \in S_0$ a smooth vector $\mathscr{P}_{v_0} \in \mathscr{H}_{v_0}$ such that for every pure tensor $\phi \in \mathscr{V}^S$

$$\mathscr{P}(\phi) = c \prod_{v_0 \in S_i} \mathscr{P}_{v_0}(W_0) \prod_{v_0 \in S_s} \mathscr{P}_{v_0}(W_{v_1} \otimes W_{v_2})$$

We note this factorization is not formal as we don't have local multiplicity one result also the proof of the theorem will provide us with a specific choice of local linear forms and also a specific value for the constant c in terms of L-functions. The main tool used in the proof is the relative trace formula introduced in [JY96].

We let Π be a distinguished cuspidal representation of $GL(3, E_{\mathbb{A}})$ with central character Ω , it is thus the base change of a unique cuspidal representation π of $GL(3, F_{\mathbb{A}})$ with central character ω . If f is a smooth function with compact support on G_S and K_S finite, we set

$$\mathscr{R}_{\Pi}(f) = \sum_{\phi_i} \mathscr{W}(\Pi(f)\phi_i) \overline{\mathscr{P}(\phi_i)}$$

the sum is over the basis (ϕ_i) of \mathscr{V}^S . This linear form can be thought as the *relative Bessel distribution* attached to Π .

On the group $G_{S_0}^+$, we can define

$$\mathscr{B}_{\pi}(f') = \sum_{\phi'_i} \mathscr{W}'(\pi(f')\phi'_i) \overline{\mathscr{W}'(\pi(\omega)\phi'_i)}$$

If f and f' have matching orbital integrals, from 2.1 we have

$$\mathscr{R}_{\Pi}(f) = \mathscr{B}_{\pi}(f')$$

For each $v_0 \in S_i$ we can define a distribution on \mathscr{B}_v such that $\mathscr{R}_v(f_v) = \mathscr{B}_{\pi_{v_0}}(f'_{v_0})$ for f_v and f'_v with matching orbital integrals. At a place $v_0 \in S$, we can also define \mathscr{R}_{v_0} such that

$$\mathscr{R}_{v_0}(f_{v_1}\otimes f_{v_2})=\mathscr{B}_{v_0}(f'_{v_0})$$

where f'_{v_0} have matching orbital integrals with $f_{v_1} \otimes f_{v_2}$.

From the decomposition

$$\mathscr{B}_{\pi}(f') = c(\pi) \prod_{v \in S_0} \mathscr{B}_{v_0}(f'_{v_0})$$

we can write

$$\mathscr{R}_{\Pi}(f) = c(\pi) \prod_{v_0 \in S_i} \mathscr{R}_{v_0}(f_v) \prod_{v_0 \in S_s} \mathscr{R}_{v_0}(f_{v_1} \otimes f_{v_2})$$

Let $\tilde{\mathscr{P}}$ be the linear form on $\mathscr{V}^S(\Pi)$ defined by

$$\tilde{\mathscr{P}}(\phi) = \prod_{v_0 \in S_i} \mathscr{P}_{v_0}(W_v) \prod_{v_0 \in S_s} \mathscr{P}_{v_0}(W_{v_1} \otimes W_{v_2})$$

We have

$$\sum_{\phi} \mathscr{W}(\Pi(f)\phi_i)\overline{\mathscr{P}}(\phi_i) = c(\Pi) \prod_{v_0 \in S_i} \mathscr{R}_{v_0}(f_v) \prod_{v_0 \in S_s} \mathscr{R}_{v_0}(f_{v_1} \otimes f_{v_2})$$
$$= \frac{c(\Pi)}{c(\pi)} \mathscr{R}_{\Pi}(f)$$
$$= \frac{c(\Pi)}{c(\pi)} \Sigma_{\phi} \mathscr{W}(\Pi(f)\phi_i) \overline{\mathscr{P}(\phi_i)}$$

since Π is irreducible, we get $\mathscr{P} = \frac{c(\pi)}{c(\Pi)}\tilde{\mathscr{P}}$.

2.3. Stabilization for Eisenstein series. We summarize the main result of [LR00], they studied the regularized periods of Eisenstein series associated to the pair ($\operatorname{Res}_{E/F}GL_3, U_3$).

For G a reductive group over a number field and H the fixed point set of an involution θ , regularized period integral $\mathscr{P}^{H}(\phi)$ of $\phi \in V_{\pi}$, for π an automorphic form of G has be defined in [JLR99].

When $\phi = E(\varphi, \lambda)$ is a cuspidal Eisenstein series, $\mathscr{P}^{H}(\phi)$ can be expressed in terms of certain linear functionals $J(\eta, \varphi, \lambda)$ called *intertwining periods* in [JLR99].

Assume now $G = \operatorname{Res}_{E/F} H$ with E/F a quadratic extension and θ is the involution induced by the Galois conjugation. Let B = TN be a θ -stable Borel subgroup with T, N also θ -stable. Given a character χ of $[T](\mathbb{A}_E)$ trivial on $Z(\mathbb{A}_E)$ and λ in $\mathfrak{a}_{0,\mathbb{C}}^*$ the Eisenstein series

$$E(g,\varphi,\lambda) = \sum_{\gamma \in B(E) \backslash G(E)} \varphi(\gamma g) e^{\langle \lambda, H(\gamma g) \rangle}$$

converges for Re λ sufficiently large. Here $\varphi: G(\mathbb{A}) \to \mathbb{C}$ satisfies $\varphi(bg) = \delta(b)^{1/2}\chi(b)\varphi(g)$.

According to a result of Springer, the double coset in $B(E)\backslash G(E)/H(F)$ are parametrized by η such that $\eta\theta(\eta)^{-1} \in N_G(T)$, hence we obtain

$$\iota: \ B(E) \backslash G(E) / H(F) \longrightarrow W$$

for each η , we set $H_{\eta} = H \cap \eta^{-1} N \eta$. The intertwining period attached to η is

$$J(\eta,\varphi,\lambda) = \int_{H_{\eta}(\mathbb{A}_F)\backslash H(\mathbb{A}_F)} e^{\langle\lambda,H(\eta h)\rangle} \varphi(\eta h) \ dh$$

For suitable φ and λ we have

$$\mathscr{P}^{H}(E(\varphi,\lambda)) = \delta_{\theta} \cdot c \cdot \sum_{\iota(\eta) = \omega} J(\eta,\varphi,\lambda)$$

here ω is the longest element of the Weyl group.

Now we special to $G = \operatorname{Res}_{E/F}GL(3, E)$, H = U(3), G' = GL(3, F). Let T and T' be the diagonal tori of G and G' and $Nm : T \to T'$ the norm mapping. We fix χ a unitary character of $T(\mathbb{A}_E)$ and $\mathscr{B}(\chi) = \{\nu\}$ the set of characters of $T'(F)Z'(\mathbb{A}_F)\setminus T'(\mathbb{A}_F)$ such that $\chi = \nu \circ Nm$.

Definition 2.3. For E/F a quadratic extension of local fields or $E = F \oplus F$, we define the stable local period as

$$J^{st}(\nu,\varphi,\lambda) = \sum_{\iota(\eta)=\omega} \Delta_{\nu,\lambda}(\eta)^{-1} \int_{H_{\eta}(F)\backslash H(F)} e^{\langle\lambda,H(\eta h)\rangle} \varphi(\eta h) \ dh$$

We define the global stable period as

$$J^{st}(\nu_0,\varphi,\lambda) = \prod_v J^{st}_v(\nu_{0v},\varphi_v,\lambda)$$

Theorem 2.4. We have

$$\mathscr{P}^{H}(E(\varphi,\lambda)) = \sum_{\nu \in \mathscr{B}(\chi)} J^{st}(\nu,\varphi,\lambda)$$

the right-hand side is a sum of factorizable distributions.

Furthermore, after some local unramified computations, we can show the local factors at unramified places are given by ratios of L-functions.

Proposition 2.5. For E/F an unramified extension of p-adic fields and $p \neq 2$, χ unramified, for $\varphi_0 \in I(\chi, \lambda)$ with $\varphi_0(e) = 1$, we have the stable local period $J^{st}(\nu, \varphi_0, \lambda)$ is equal to

$$\frac{L(\nu_1\nu_2^{-1}\omega, s_1)L(\nu_2\nu_3^{-1}\omega, s_2)L(\nu_1\nu_3^{-1}\omega, s_3)}{L(\nu_1\nu_2^{-1}, s_1+1)L(\nu_2\nu_3^{-1}, s_2+1)L(\nu_1\nu_3^{-1}, s_3+1)}$$

for $s_i = \langle \lambda, \alpha_i^{\vee} \rangle$.

Definition 2.6. We define the relative Bessel distribution in terms of regularized period as

$$J(f,\chi,\lambda) = \sum_{\phi_i} \mathscr{P}^H(E(I(f,\chi,\lambda)\varphi,\lambda)) \ \overline{\mathscr{W}}(\varphi,\lambda)$$

here ϕ_i runs over an orthogonal basis of $I(\chi, \lambda)$.

We define the Bessel distribution for $\nu \in \mathscr{B}(\chi)$ as

$$J'(f',\nu,\lambda) = \sum_{\phi'_i} \mathscr{W}'(I(f',\nu,\lambda)\varphi,\lambda) \ \overline{\mathscr{W}'}(\varphi',\lambda)$$

We introduce

$$J^{st}(f,\nu,\lambda) = \sum_{\phi_i} J^{st}(\nu,\varphi,\lambda) \ \overline{\mathscr{W}}(\varphi,\lambda)$$

as a consequence of theorem 2.4, we have $J(f, \chi, \lambda) = \sum_{\nu \in \mathscr{B}(\chi)} J^{st}(f, \nu, \lambda)$. The second main result of [LR00] is which is an analog of 2.1 for Eisenstein series

Theorem 2.7. Assume that the global quadratic extension E/F is split at the real archimedean places for χ a unitary character and $\nu \in \mathscr{B}(\chi)$, we have

$$J^{st}(f,\nu,\lambda) = J'(f',\nu,\lambda)$$

for functions f and f' with matching orbital integrals.

3. Local result

In this section E/F will be a quadratic extension of non-archimedean local fields, we say that Π is distinguished if the space $\mathscr{H}(\Pi, H)$ of *H*-invariant forms is non-zero, then the central character Ω of Π is trivial on U_1 . We fix ω a character of F^{\times} with $\Omega(z) = \omega(z\overline{z})$.

Theorem 3.1. Suppose Π is supercuspidal then Π is distinguished if and only if $\Pi^{\sigma} = \Pi$. The dimension of $\mathscr{H}(\Pi, H)$ is then one. Then Π is the base change of a unique cuspidal representation π of GL(3, F) with central character ω and there exists a unique \mathscr{P}_{π} of $\mathscr{H}(\Pi, H)$ with

$$\sum_{\phi_i} \mathscr{W}(\Pi(f)\phi_i)\overline{\mathscr{P}_{\pi}(\phi_i)} = \mathscr{B}_{\pi}(f')$$

for f and f' with matching orbital integrals.

This is proven by realizing Π as the local component of a cuspidal distinguished automorphic representation with central character Ω .

References

- [Jac01] Hervé Jacquet. Factorization of period integrals. Journal of Number Theory, 87(1):109-143, 2001.
- [JLR99] Hervé Jacquet, Erez Lapid, and Jonathan Rogawski. Periods of automorphic forms. Journal of the American Mathematical Society, 12(1):173–240, 1999.
- [JY96] Hervé Jacquet and Yangbo Ye. Distinguished representations and quadratic base change for GL(3). Transactions of the American Mathematical Society, 348(3):913–939, 1996.
- [LR00] Erez Lapid and Jonathan Rogawski. Stabilization of periods of eisenstein series and bessel distributions on GL(3) relative to U(3). *Documenta Mathematica*, 5:317–350, 2000.