
EXPLICIT PLANCHEREL FORMULA
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1. Introduction

In this note, I will summarize the main result for the paper [Rap21] where he proved an explicit Plancherel
formula for GLn(F )\GLn(E) where E/F is a quadratic extension of local fields of characteristic 0, the main
ingredient in his proof is a local functional equation for Asai γ-factors.

2. Preliminaries

2.1. Local γ-factors. Let φ : W ′
F → GL(M) be a continuous semi-stable and algebraic when restricted to

SL2(C) is a finite dimensional complex representation of W ′
F . We can associate φ a local L-factor L(s, φ)

and a local ϵ-factor ϵ(s, φ, ψ′) as in Tate thesis. When φ = 1F is the trivial one-dimensional representation
of W ′

F , we will write ζF (s) for L(s, 1F ).

Definition 2.1. We define the local γ-factor associated to φ as

γ(s, φ, ψ′) = ϵ(s, φ, ψ′)
L(1− s, φ∨)

L(s, φ)

for tempered φ meaning that φ(WF ) is bounded in GL(M), we will set

γ∗(0, φ, ψ′) = lim
s→0

ζF (s)
nφγ(s, φ, ψ′)

where nφ is the order of the zero of γ(s, φ, ψ′) at s = 0.

For every π ∈ Π2(GLn(E)), γ(s, π,As) has at most a simple zero at s = 0 and moreover

γ(0, π, As) ↔ π ∈ BCn(Temp(U(n)))

we have the following equality

γ(s, σ,Ad) =
γ(s,BCn(σ), Ad)

γ(s,BCn(σ), As)

for σ ∈ Temp(U(V )) and n = dim (V ).
Consider the semi-direct product

H = (GL(M)×GL(M))⋊ Z/2Z

where Z/2Z acts by permuting the two factors of GL(M), this is the L-group of ResE/F (GL(V )) with

dimEV = dimM . The irreducible representationM⊠M of H0 = GL(M)×GL(M) is invariant under Z/2Z
and has two extensions to H. In one such extension, the group Z/2Z acts by permuting the two copies ofM ,
the other extension is given by twisting the non-trivial character of H/H0, we will denote these extensions
by As+(M) and As−(M), we have

IndHH0(M ⊠M) = As+(M)⊕As−(M)

Proposition 2.2. If dim M = n, then the stabilizer in H of a non-degenerate vector in As(−1)n−1

(M) is
isomorphic as a complex Lie group to the L-group of U(V ), and the action of this stabilizer on the other
representation As(−1)n(M) is the adjoint representation of LU(V ).
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For σ a unramified representation of the unitary group U2 associated with a unramified quadratic extension
E/F , assume that σ ∼= IndGB(χ), with χ a unrmified character of E×, then we have

LF (s, σ,Ad) = ζF (s)LF (s, χE/F )LF (s, χ)LF (s, χ
−1)

on the other hand for π = BC(σ), we have π ∼= IndGE

BE
(χ, χ−1), we have the following formula for the Asai

L-function for π

LAS(s, π) = LF (s, χ)LF (s, χ
−1)ζE(s)

hence we have the equality

LAS(s,BC(σ)) = LF (s, σ)

2.2. Rankin-Selberg local functional equation for Asai γ-factors. The following variants of the lo-
cal Rankin-Selberg zeta integrals has been introduced and studied by Flicker and Kable, for every W ∈
Cω(Nn(E)\GLn(E), ψn), ϕ ∈ S(Fn) and s ∈ H set

Z(s,W, ϕ) :=

∫
Nn(F )\GLn(F )

W (h)ϕ(enh)|det h|s dh

Theorem 2.3. For every W ∈ W(π, ψn) and ϕ ∈ S(Fn) and s ∈ H with R(s) < 1 we have

Z(1− s, W̃ , ϕ̂) = ωπ(τ)
n−1|τ |

n(n−1)
2 (s−1/2)

E λE/F (ψ
′)−

n(n−1)
2 γ(s, π,As, ψ′)Z(s,W, ϕ)

Lemma 2.4. Let σ ∈ Temp(U(n)) and set π = BCn(σ), then we have

Z(1, W̃ , ϕ̂) = ϕ(0)c1(π)β(W )

for all W ∈ W(π, ψn) and ϕ ∈ S(Fn).

2.3. Computation of certain spectral distributions.

Proposition 2.5. For every Φ ∈ S(Temp(GLn(E))), we have

lim
s→0+

nγ(s, 1F , ψ
′)

∫
Temp(GLn(E))

Φ(π)γ(s, π,As, ψ′)−1d
GLn(E)

(π)

λE/F (ψ
′)−n2

∫
Temp(U(n))/stab

Φ(BCn(σ))
γ∗(0, σ, Ad, ψ′)

|Sσ|
dσ

where the right-hand side is absolutely convergent and so does the left hand side.

For every σ ∈ Temp(U(n))/stab, set

c(σ) := λE/F (ψ
′)−n(n+1)/2c1(π)ωσ(−1)1−nηE/F (−1)n(n−1)2/2

where π = BCn(σ) and c1(π) is a constant, note that c(σ) is just certain root of unity.
We can obtain the following corollary from the previous proposition 2.5 and the functional equation for

the zeta integral associated with the Asai L-function:

Corollary 2.6. For every f ∈ S(GLn(E)) and g ∈ GLn(E), we have∫
Nn(F )\GLn(F )

Wf (g, h) dh =

|τ |n(n−1)/4
E

∫
Temp(U(n))/stab

β(Wf,BCn(σ)(g, ·))
γ∗(0, σ, Ad, ψ′)

|Sσ|
c(σ)dσ

Proof. We may assume that g = 1 by replacing f by L(g)f . Applying the functional equation of theorem
2.3, this becomes∫

Nn(F )\GLn(F )

Wf (1, h)dh = lim
s→0+

nγ(s, 1F , ψ
′)|τ |

n(n−1)
2 ( 1

2−s)

E λE/F (ψ
′)

n(n−1)
2 ×∫

Temp(GLn(E))

Z(1− s, W̃f,π(1, ·), ϕ̂)ωπ(τ)
1−nγ(s, π,As, ψ′)−1d

GLn(E)
(π)
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by taking the limit to 0, we get

λE/F (ψ
′)−

n(n+1)
2 |τ |

n(n−1)
4

E

∫
Temp(U(n))/stab

Z(1, W̃f,BCn(σ)(1, ·), ϕ̂)ωBCn(σ)(τ)
1−n γ

∗(0, σ, Ad, ψ′)

|Sσ|
dσ

by lemma 2.4 and the fact that ϕ(0) = 1, we have

Z(1, W̃f,BCn(σ)(1, ·), ϕ̂) = c1(π)β(Wf,BCn(σ)(1, ·))
this gives the result we want. □

3. A Plancherel formula for GLn(F )\GLn(E)

3.1. A local unfolding identity. Recall that we have associated to any f ∈ S(GLn(E)) a function Wf ∈
Cω(Nn(E)\GLn(E)×Nn(E)\GLn(E), ψ−1

n ⊠ ψn).

Proposition 3.1. For every f ∈ S(GLn(E)), we have∫
GLn(F )

f(h)dh = |τ |n(n−1)/4
E

∫
Nn(F )\Pn(F )

∫
Nn(F )\GLn(F )

Wf (g, h) dhdp

where the right hand side is given by an absolutely convergent expression.

3.2. Main theorem.

Lemma 3.2. For f1, f2 ∈ S(GLn(E)), we have

(f1, f2)Yn,π = |τ |n(n−1)/2
E (β⊗̂β)(Wf2∗f∨

1 ,π)

Theorem 3.3. For every φ1, φ2 ∈ S(Yn), we have

(φ1, φ2)Yn =

∫
Temp(U(n))/stab

(φ1, φ2)Yn,BCn(σ)
|γ∗(0, σ, Ad, ψ′)|

|Sσ|
dσ

where the right-hand side is absolutely convergent.

I will summarize BP’s proof and I will ignore all the issues concerning the analytic property of the integrals.

Proof. Let φ1, φ2 ∈ S(Yn) and choose f1, f2 ∈ S(GLn(E)) such that φi = φfi , then we have

(3.1) (φ1, φ2)Yn
=

∫
Yn

∫
GLn(F )×GLn(F )

f1(h1x)f2(h2x)dh1dh2dx =

∫
GLn(F )

f(h) dh

where we have set f = f2 ∗ f∨1 . Moreover by lemma 3.2, we also have

(3.2) (φ1, φ2)Yn,π = |τ |n(n−1)/2
E (β⊗̂β)(Wf,π)

for every π ∈ BCn(Temp(U(n))).
Let φ1, φ2 ∈ S(Yn) and f1, f2, f ∈ S(GLn(E)) as before, by proposition 3.1 and corollary 2.6 we have∫

GLn(F )

f(h)dh = |τ |n(n−1)/2
E

∫
Nn(F )\Pn(F )

∫
Temp(U(n))/stab

β(Wf,BCn(σ)(p,·))
γ∗(0, σ, Ad, ψ′)

|Sσ|
dσ dp

There are various argument in BP’s paper tell us that the right hand side is an absolutely convergent
expression and therefore∫

GLn(F )

f(h)dh = |τ |n(n−1)/2
E

∫
Nn(F )\Pn(F )

∫
Temp(U(n))/stab

β(Wf,BCn(σ)(p,·))
γ∗(0, σ, Ad, ψ′)

|Sσ|
dσ dp

= |τ |n(n−1)/2
E

∫
Temp(U(n))/stab

(β⊗̂β)(Wf,BCn(σ))
γ∗(0, σ, Ad, ψ′)

|Sσ|
c(σ) dσ

=

∫
Temp(U(n))/stab

(φ1, φ2)Yn,BC(σ)
γ∗(0, σ, Ad, ψ′)

|Sσ|
c(σ)dσ

By equation 3.1, we get

(φ1, φ2)Yn
=

∫
Temp(U(n))/stab

(φ1, φ2)Yn,BC(σ)
γ∗(0, σ, Ad, ψ′)

|Sσ|
c(σ)dσ
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□
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