EXPLICIT PLANCHEREL FORMULA FOR THE SPACE OF SYMPLECTIC FORMS

RUI CHEN

1. INTRODUCTION

This is a study note for Lapid and Offen's proof [LO22] on the explicit Plancherel formula for the space Y_n of symplectic bilinear forms on a 2*n*-dimensional vector space over a local field F in terms of the Plancherel formula of $G' = \operatorname{GL}_n(F)$.

For any $\pi \in \operatorname{Irr}_{temp} G'$ and $\sigma = \mathfrak{S}(\pi) \in \operatorname{Irr} G$, we will define a realization $\mathfrak{M}_{\psi_N}(\sigma)$ of σ with an explicit invariant inner product and a non-trivial *H*-invariant linear form ℓ_H .

For any $f_1, f_2 \in \mathcal{S}(G)$ let

$$(f_1, f_2)_{\sigma} = \sum_{v} \ell_H(\sigma(f_1)v) \overline{\ell_H(\sigma(f_2)v)}$$

where v ranges over a suitable orthonormal basis of $\mathfrak{M}_{\psi_N}(\sigma)$. Since ℓ_H is *H*-invariant, the positive semidefinite hermitian form $(f_1, f_2)_{\sigma}$ factors through the canonical map $\mathcal{S}(G) \to \mathcal{S}(H \setminus G)$.

Our main result is

Theorem 1.1. For a suitable choice of Haar measures and for any $\varphi_1, \varphi_2 \in \mathcal{S}(H \setminus G)$ we have

$$(\varphi_1,\varphi_2)_{L^2(H\setminus G)} = \int_{Irr_{temp}(G')} (\varphi_1,\varphi_2)_{\mathfrak{S}(\pi)} d\mu_{pl}(\pi)$$

where the right handside is an absolutely convergent integral.

Corollary 1.2. We have the following decomposition of unitary representations of G:

$$L^{2}(H\backslash G) = \int_{Irr_{temp}(G')} \mathfrak{S}(\pi) \ d\mu_{pl}(\pi)$$

The proof of theorem 1.1 are modeled in the recent remarkable paper of Beuzart-Plessis. The main new input is an identity described in theorem 2.7 below. It is based on two ingredients, the first is a relation between the inner product on $\mathfrak{M}_{\psi_N}(\sigma)$ and the standard invariant pairing between $I_P(\pi \otimes \pi, \varpi)$ and $I_P(\tilde{\pi} \otimes \tilde{\pi}, \varpi^{-1})$. The second is a relation between the ℓ_H and an *H*-invariant functional on $I_P(\pi \otimes \pi, \varpi)$ which is a local analog of the global symplectic period studied by Jacquet and Rallis. Both relations involve the standard intertwining operator from $I_P(\pi \otimes \pi, \varpi)$ to $I_P(\pi \otimes \pi, \varpi^{-1})$.

2. An identity between Bessel distributions

Let V and V^{\vee} be two admissible smooth representations of an ℓ -group X and let

 $B:V\times V^{\vee}\longrightarrow \mathbb{C}$

be an X-invariant non-degenerate bilinear form, thus B defines an isomorphism between V^{\vee} and the smooth dual of V. We refer to (V, V^{\vee}, B) with the group action as X-representations in duality.

A morphism

$$(\Phi, \Phi^{\vee}): (V_1, V_1^{\vee}, B_1) \longrightarrow (V_2, V_2^{\vee}, B_2)$$

of X-representations in duality is a pair of intertwining operators $\Phi: V_1 \to V_2, \Phi^{\vee}: V_2^{\vee} \to V_1^{\vee}$ such that

$$B_2(\Phi v_1, v_2^{\vee}) = B_1(v_1, \Phi^{\vee} v_2^{\vee})$$

for all $v_1 \in V_1$, $v_2 \in V_2^{\vee}$.

We will consider the following examples associated to an irreducible tempered representation π of $G' = GL_n(F)$.

Date: January 2025.

Example 2.1. Let $\mathfrak{M}_{\psi_{N'}}(\pi)$ be the Whittaker model of π with respect to $\psi_{N'}$ with right translation. Define a bilinear form

$$B_{Q'}(W,W^{\vee}) = \int_{N' \setminus Q'} W(g) W^{\vee}(g) \ dg$$

on $\mathfrak{M}_{\psi_{N'}}(\pi) \times \mathfrak{M}_{\psi_{N'}^{-1}}(\tilde{\pi})$, this integral is absolutely convergent by a well-known result of Bernstein. Thus the tuple

$$\mathcal{D}_{\psi_{N'}}(\pi) = (\mathfrak{M}_{\psi_{N'}}(\pi), \mathfrak{M}_{\psi_{N'}}(\tilde{\pi}), B_{Q'})$$

is a G' representation in duality.

Example 2.2. Let $\mathcal{D} = (V, V^{\vee}, B)$ be *M*-representations in duality, denote the representation on V by τ , for any character χ of M consider the induced representation $I_P(V,\chi)$ realized in the space of functions $\varphi: G \to V$. Then we have a G-duality data

$$I_P(\mathcal{D},\chi) = (I_P(V,\chi), I_P(V^{\vee},\chi^{-1}), B_{P\setminus G})$$

where

$$B_{P\setminus G}(\varphi, \varphi^{\vee}) = \int_{P\setminus G} B(\varphi(g), \varphi^{\vee}(g)) \ dg$$

Example 2.3. Let $\sigma \in \mathfrak{S}(\pi) \in \operatorname{Irr} G$, note that $\tilde{\sigma} = \mathfrak{S}(\tilde{\pi})$, consider the Zelevinsky model $\mathfrak{M}_{\psi_N}(\sigma)$ of σ , denote D the joint stabilizer of e_n and e_{2n} , then the bilinear form

$$B_D(W, W^{\vee}) = \int_{D \cap N \setminus D} W(g) W^{\vee}(g) \ dg$$

on $\mathfrak{M}_{\psi_N}(\sigma) \times \mathfrak{M}_{\psi_N^{-1}}(\tilde{\sigma})$ is *G*-invariant. We write

$$\mathcal{D}_{\psi_N}(\sigma) = (\mathfrak{M}_{\psi_N}(\sigma), \mathfrak{M}_{\psi_N^{-1}}(\tilde{\sigma}), B_D)$$

for the *G*-representations in duality.

Let

$$\mathcal{M}_{\pi}: I_{P}(\mathfrak{M}_{\psi_{N_{M}}}(\pi \otimes \pi), \varpi) \to I_{P}(\mathfrak{M}_{\psi_{N_{M}}}(\pi \otimes \pi), \varpi^{-1})$$

be the intertwining operator given by the absolutely convergent integral

$$[\mathcal{M}_{\pi}\varphi(g)](x) = \int_{U} \varphi(\omega_{U}^{-1}ug)(\omega_{U}^{-1}x\omega_{U}) \ du, \ g \in G, \ x \in M$$

let $\tilde{\mathcal{M}}_{\pi}$ be the composition of \mathcal{M}_{π} with injective map $I_P(\mathfrak{M}_{\psi_{N_M}}(\pi \otimes \pi), \varpi^{-1}) \to C^{\infty}(N \setminus G, \psi_N)$ given by $\varphi \mapsto \varphi(g)(e)$, the image of $\tilde{\mathcal{M}}_{\pi}$ is $\mathfrak{M}_{\psi_N}(\sigma)$.

Definition 2.4. Suppose that $\mathcal{D} = (V, V^{\vee}, B)$ is an admissible X-representation in duality, denote by π the corresponding representation of X on V, using B we may identify $V \otimes V^{\vee}$ with the space $\operatorname{End}_{sm}(V)$ of smooth linear endomorphisms of V, i.e. the linear maps $A: V \to V$ such that $A\pi(g) = \pi(g)A = A$ for all g in sufficiently small open subgroup of X. For any $f \in \mathcal{S}(X)$, we may view $\pi(f)$ as an element of $V \otimes V^{\vee}$. For any $\ell \in V^*$ and $\ell^{\vee} \in (V^{\vee})^*$, we define

$$\mathcal{B}_{\mathcal{D}}^{\ell,\ell^{\vee}}(f) = (\ell \otimes \ell^{\vee})[\pi(f)]$$

Definition 2.5. Let \mathfrak{B} be a basis for V and let K be an open subgroup of X, we say that \mathfrak{B} is compatible with K if for every $v \in \mathfrak{B}$, either v is K-invariant or $\int_K \pi(k)v \, dk = 0$. We say that \mathfrak{B} is admissible if it is compatible with a family of open subgroups of X that form a neighborhood base for the identity.

Lemma 2.6. We have

• Suppose \mathfrak{B} is an admissible basis for V and let \mathfrak{B}^{\vee} be the dual basis for V^{\vee} , then

$$\mathcal{B}_{\mathcal{D}}^{\ell,\ell^{\vee}}(f) = \sum_{v \in \mathfrak{B}} \ell(\pi(f)v)\ell^{\vee}(\tilde{v})$$

where only finitely many terms in the sum are non-zero.

• For any $g_1, g_2 \in X$, we have '

$$\mathcal{B}_{\mathcal{D}}^{\ell,\ell^{\vee}}(L(g_1)R(g_2)f) = \mathcal{B}_{\mathcal{D}}^{\ell\circ\pi(g_1),\ell^{\vee}\circ\pi^{\vee}(g_2)}(f)$$

We now state the main result of this section. Let $\pi \in \operatorname{Irr}_{temp}(G')$ and ℓ_H be the linear form on $\mathfrak{M}_{\psi_N}(\mathfrak{S}(\pi))$ given by

$$\ell_H(W) = \int_{N_H \setminus Q_H} W(h) \ dh$$

Theorem 2.7. Let $\pi \in Irr_{temp}(G')$ and $\sigma = \mathfrak{S}(\pi)$, then we have

$$\mathcal{B}_{\mathcal{D}_{\psi_N}(\sigma)}^{\ell_H,\delta_e}(f) = \mathcal{B}_{\mathcal{D}_{\psi_N'}(\pi)}^{\delta_e,\delta_e}(Tf), \ f \in \mathcal{S}(G)$$

where δ_e is the evaluation at the identity and $T(f) \in \mathcal{S}(G')$ is given by

$$Tf(g) = |\det g|^{\frac{1-n}{2}} \int_{U_H \setminus U} \varphi(u\iota_1(g)) \, du, \quad g \in G'$$

where $\varphi = \int_{H} f(h \cdot) dh$.

A concrete M_H -invariant linear form on $\mathfrak{M}_{\psi_{N_M}}(\pi \otimes \pi)$ is given by

$$\ell_{M_H}(W) = \int_{N' \setminus G'} W(\iota(p)) \, dp$$

hence the linear form

$$\ell_H^{\text{ind}}(\varphi) = \int_{P_H \setminus H} \ell_{M_H}(\varphi(h)) \, dh$$

 $\varphi \in I_P(\mathfrak{M}_{\psi_{N_M}}(\pi \otimes \pi), \varpi)$ is well-defined and *H*-invariant.

Proposition 2.8. We have

$$\ell_H^{ind} = \ell_H \circ \tilde{\mathcal{M}}_{\pi}$$

Finally

Lemma 2.9. For any $f \in \mathcal{S}(M)$ we have

$$\mathcal{B}_{\mathcal{D}_{\psi_{N_{M}}}(\pi\otimes\pi)}^{\ell_{M_{H}},\delta_{e}}(f) = \mathcal{B}_{\mathcal{D}_{\psi_{N'}}(\pi)}^{\delta_{e},\delta_{e}}(\mathfrak{C}(f))$$

where $\mathfrak{C}(f) \in \mathcal{S}(G')$ is given by

$$\mathfrak{C}(f)(g) = \int_{M_H} f(m\iota_1(g)) \ dm, \ g \in G'$$

3. Completion of proof

The first step is take $\varphi_i = \int_H f_i(h \cdot) dh \ i = 1, 2$, the relation we wants to prove becomes

(3.1)
$$\int_{H} f(h) \ dh = \int_{\operatorname{Irr}_{temp}(G')} \mathcal{B}_{\mathcal{D}_{\psi_{N}}(\mathfrak{S}(\pi))}^{\ell_{H},\ell_{H}}(f^{\vee}) \ d\mu_{pl}(\pi)$$

where $f = \overline{f_2} * f_1^{\vee}$. We define

$$W_f(g_1, g_2) = \int_N f(g_1^{-1} u g_2) \psi_N(u)^{-1} \, du = \int_{N_M} \int_U f(g_1^{-1} v u g_2) \, du \, \psi_{N_M}(v)^{-1} \, g_1, \, g_2 \in G$$

We have the following unfolding lemma

Lemma 3.1. For any $f \in \mathcal{S}(G)$ we have

$$\int_{H} f(h) \ dh = \int_{N_{H} \setminus Q_{H}} \int_{N_{H} \setminus H} W_{f}(h,q) \ dh \ dq$$

where the right-hand side converges as an iterated integral.

Next we recall the Whittaker spectral expansion for G'

Proposition 3.2. For any $f \in \mathcal{S}(G')$

$$W_{f}^{G'}(e,e) = \int_{Irr_{temp}(G')} \mathcal{B}_{\mathcal{D}_{\psi_{N'}}(\pi)}^{\delta_{e},\delta_{e}}(f^{\vee}) \ d\mu_{pl}(\pi) = \int_{Irr_{temp}(G')} \mathcal{B}_{\mathcal{D}_{\psi_{N'}}^{-1}(\pi)}^{\delta_{e},\delta_{e}}(f) \ d\mu_{pl}(\pi)$$

Now let's turn to the proof of our main theorem 1.1: combining lemma 3.1 and proposition 3.2, we can get

$$\int_{H} f(h) \ dh = \int_{N_H \setminus Q_H} \int_{\pi \in \operatorname{Irr}_{temp}(G')} \mathcal{B}^{\delta_e, \delta_e}_{\mathcal{D}_{\psi'_N(\pi)}}(T(R(q)f)) \ d\mu_{pl}(\pi) \ dq$$

we can show that this double integral converges. Interchanging the order of integration, we get

$$\int_{H} f(h) \ dh = \int_{\pi \in \operatorname{Irr}_{temp}(G')} \int_{N_H \setminus Q_H} \mathcal{B}_{\mathcal{D}_{\psi_N}^{-1}(\pi)}^{\delta_e, \delta_e}(T(R(q))f) \ dq \ d\mu_{pl}(\pi)$$

By theorem 2.7 and lemma 2.6 we see this is equal to

$$\int_{\pi \in \operatorname{Irr}_{temp}(G')} \int_{N_H \setminus Q_H} \mathcal{B}_{\mathcal{D}_{\psi_N^{-1}}(\mathfrak{S}(\pi))}^{\ell_H, \delta_e}(T(R(q)f)) \, d\mu_{pl}(\pi) \, dq$$

$$= \int_{\pi \in \operatorname{Irr}_{temp}(G')} \int_{N_H \setminus Q_H} \mathcal{B}_{\mathcal{D}_{\psi_N^{-1}}(\mathfrak{S}(\pi))}^{\ell_H, \delta_q}(f)) \, d\mu_{pl}(\pi) \, dq$$

$$= \int_{\pi \in \operatorname{Irr}_{temp}(G')} \mathcal{B}_{\mathcal{D}_{\psi_N^{-1}}(\mathfrak{S}(\pi))}^{\ell_H, \ell_H}(f) \, d\mu_{pl}(\pi)$$

$$= \int_{\pi \in \operatorname{Irr}_{temp}(G')} \mathcal{B}_{\mathcal{D}_{\psi_N}(\mathfrak{S}(\pi))}^{\ell_H, \ell_H}(f^{\vee}) \, d\mu_{pl}(\pi)$$

this is equivalent to theorem 1.1.

References

[LO22] Erez Lapid and Omer Offen. Explicit plancherel formula for the space of symplectic forms. International mathematics research notices, 2022(18):14255–14294, 2022.