EQUIVARIANT COHOMOLOGY

RUI CHEN

1. INTRODUCTION

This is a study note for equivariant cohomology based on Brion’s paper [Bri98] and the book by Bernstein-
Lunts, Brion’s paper is on the topological setting and Bernstein-Lunts’ book works with the equivariant
derived category.

2. TOPOLOGICAL SETTING

2.1. Equivariant cohomology. We want to find explicit description of cohomology ring of certain mani-
folds with group actions which arise in representation theory, e.g. homogeneous spaces, compact multiplicity
free spaces.

In this section, we will assume that k = Q, X a topological space, H*(X) = H*(X,Q), H*(X) is a graded
Q-algebra. f: X — Y continuous map between topological spaces will induce f*: H*(Y,k) - H*(X, k).
Given X with a topological group G-action, we will say X is a G-space.

There exists a principal G-bundle

p: EG — BG
E¢ is contractible, such a bundle is universal among principal G-bundles. G acts on X x Eg diagonally and
the quotient X x¢ Eg := X X Eg/G exists, we define
Hg(X, k) = H*(X Xa Eg, k‘)
In particular, if X is a point, we get
He(pt) = H(Eq/G) = H*(Bg, k)

the projection p, : X x Eq — E¢/G is a projection with fiber X. Hj(X) is an algebra over H(pt).

Let’s consider some special cases:

i) If G acts trivially on X, then X X¢ Fg = X X Bg, by Kunneth isomorphism we have

Hg(X) = H(X) x Hg(pt)
ii) If G acts on X and X/G exists, then
m: X Xg Eg — X/G

is a map with fiber Fg/G, at ¢ € X/G, for G, the isotropy group of z € X, G, is finite and Eg is
contractible, we have Eg /G, is Q-acyclic, and 7* : H*(X/G) — H(X) is an isomorphism.

iii) Let H be a closed subgroup of G, then Eg/H exists and Eg — FEg/H is a universal bundle for H,
hence

HG(G/H) = H(G/H X¢ Eg) = Hy (pt, k)
more generally, for Y a H-space, we have
H:H(G xp Y, k)= Hiy (Y, k)
Restriction to the fiber of px defines an algebra homomorphism
p i HEG(X)/(HE (pt) = HE(X) @ng (o) b — H*(X)

here (H (pt)) is the ideal of H,(X) generated by homogeneous elements of H (pt) of positive degree.
Our main result is that, for certain spaces X and for rational coefficients the map p is an isomorphism
and the equivariant cohomology algebra can be described completely [2:6] 2.10]
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Example 2.1. Let X be a space with G = S'-action, the action S x X — X makes H*(X) into an
A = k[y]/y? module with y of cohomological degree -1. Denote S = H*(BS'), we have the following relation
between the equivariant cohomology and ordinary cohomology
H'(X)=Hiu(X)®sk
H (X) = Homy (k, H (X))

here we note X = pt X, X//S' amd X//S* = X5, where X//S' = ES' xg1 X. The equivariant
cohomology for a S'-space X and ordinary cohomology of X are Koszul dual to each other.
Proposition 2.2. Let G be a compact connected Lie group and let T C G be a maximal torus with normalizer
N and with Weyl group W = N/T, let X be a G-space. Then
o The group W acts on H}.(X) and we have an isomorphism
Hg(X) = Hip(X)"
in particular, we have H(pt) is isomorphic to SW for S the symmetric algebra of x(T) and SV the
ring of W -invariants in S.
e The map
S~ HLG/T)— H(G/T)
is surjective and induces isomorphism S/(SY) — H*(G/T) where (SY) denotes the ideal of S
generated by all homogeneous W -invariants of positive degree.
o We have an isomorphism
S®sw HiH(X) =2 Hi(X)
in particular, we have H3.(G/T) is isomorphic to S ®gw S.
Proof. For the first statement, we denote GC the complexification of G, let B be a Borel subgroup of G©
containing the compact torus T', by the Iwasawa decomposition, we have G® = GB, and GNB = T, the map
G/T — G®/B is a homeomorphism, the flag manifold has a stratification by |W| strata, each isomorphic
to a complex affine space, it follows H*(G/T) vanishes in odd degrees. The Weyl group acts freely on G/T
with quotient G/N we have an isomorphism
H*(G/N) =~ H*(G/T)"
moreover x(G/N) = |W|~1x(G/T) = 1, we have H*(G/N) vanishes in odd degrees and is one-dimensional
it follows that G/N is Q-acyclic. The fibration
X xyFEqg— X xg Eg
with fiber G/N induces an isomorphism H(X) — HX (X), we have a covering
X X7 Eqg — X Xy Eg
with fiber W, hence HX(X) = H¥(X) = HA(X)W.
For the second statement, applying the previous result to a point, we get
H*(Bg) = Hg(pt) = S
the odd degree part is zero. The fibration
G/T Xa Fg — Bg
has fiber G/T with vanishing odd cohomology. The Leray spectral sequence degenerates and we obtain an
isomorphism
H*(G/T) = Hg(G/T)/(H*(Ba)+) = Hy(pt)/(Hy(pt)Y ) = S/(SY)
For the third statement, from the fibration
X X Eq — X Xa Eg
with fiber G/T, restriction to a fiber gives a ring homomorphism Hi(X) — H*(G/T) which is surjective,
the Leray spectral sequence degenerates, and
Hp(X) = Hg(X) @ H(G/T)
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For G and X as above, consider the restriction map
prHE(X)/(SY) — H*(X)
p may not be surjective, there is an important class of G-spaces for which p is an isomorphism.

Proposition 2.3. Let G be a connected compact Lie group and let X be a compact Hamiltonian G-space,
the motaion as above, then the SV -module HZ(X) is free and the map p : H:(X)/(SY) — H*(X) is an
isomorphism.

As an example, we may consider the flag manifold, X = G/T, as a coadjoint orbit G/T is a Hamiltonian
G-manifold and the moment map is an inclusion, we recover the description of the cohomology ring of X
H*(X) = S/(SY).

2.2. Localization theorem. A powerful tool in the study of equivariant cohomology is the following local-
ization theorem due to Borel-Atiyah-Segal

Theorem 2.4. Let T be a compact torus and let X be a T-space which embeds equivariantly into a finite
dimensional T-module, then let i : XT — X be the inclusion of the fized point set, then the S-linear map

ir : Hy(X) — Hp(XT)
becomes an isomorphism after inverting finitely many characters of T'.
The proof uses the following lemma

Lemma 2.5. Let G be a connected compact Lie group and let ' C G be a closed subgroup with centralizer
G' and X a symplectic G-manifold, then the fized point set X' is a symplectic G¥ manifold and the normal
bundle Nx xr has a natural structure of a complex vector bundle.

If moreover the G-action on X is Hamiltonian with moment map i, then the GT -action on X' is Hamil-
tonian with moment map: restriction of p followed by restriction to g'.

As before, we consider a compact torus T' and a T-space, we denote by i7 : X7 — X the inclusion of the
fixed point set. Under the condition that X is a T-space which admits an equivariant embedding into the
space of a finite-dimensional representation of T, if the S-module H}.(X) is free, then the map

i Hp(X) — HR(XT)
is injective,, and its image is the restriction of the images of the maps
gt HE(XT) — Hi(XT)

where T” runs over all subtori of codimension 1 of T
When X is Hamiltoinan, we can obtain the following more precise version of the localization theorem

Theorem 2.6. Let X be a compact Hamiltonian T-spaces with finitely many fized points x1 -+ x,, and
dim(X™") < 2 for any subtori T' C T of codimension 1. Then via the map i%, the algebra Hi(X) is
isomorphic to the subalgebra S™ consisting of all m-tuples (f1,--- , fm) such that: f; = fi (mod x), where
the fized points x; and xj, are in the same connected component of Xker(X) for x a primitive character of T.
Moreover, the cohomology algebra H*(X) is the quotient of H3(X) by the ideal generated by (f,f, -+, f)
where f € S is homogeneous of positive degree.

Example 2.7. Let G be a connected compact Lie group and T' C G a maximal torus, and X = G/T the
flag manifold of the complexification of G. Denote z the base point of X, then the fixed point X7 is the
orbit Wz, denote by ® the root system of (G,T'). Let x be a primitive character of T, if x is not in ®, then
Xker) = X7 If x is in ®, then

Xker(x) _ err(X)Wﬂf
is a disjoint copy of |W|/2 complex projective lines joining the fixed points wx and swz for all w € W, so
we obtain from the theorem

Hi(G/T) ={(fu)wew | fu €5, fu = fsow (mod a) Vo € &, Yw € W}
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Remark 2.8. We note that the calculation of the equivariant cohomology of flag manifolds plays an important
role in the theory of Koszul duality for category O [Soe98].

2.3. Equivariant cohomology of multiplicity free manifolds. We want to generalize the description of
the equivariant cohomology in theorem to the class of all compact multiplicity free Hamiltonian spaces.

Definition 2.9. A Hamiltonian G X is multiplicity-free if X is connected and the preimage under the
moment map of any coadjoint G-orbit consists of finitely many G-orbits.

If moreover X is compact, then the fibers of the moment map are connected and the multiplicity-free
amounts to: the preimage of each orbit under the moment map is an unique orbit.

Theorem 2.10. Let X be a compact multiplicity-free space under a connected compact Lie group G, then
with the notation above, the algebra H}(X) is isomorphic via i, to the algebra S™ consisting of all m-tuples
(f1,--+, fm) such that
e cach f; is in SWi.
o fi = w(fx) (mod N\j —w(A)) whenever w € W and the segment [\j,w(A\i)] is a component of
w(X1) Nt*, here Xy is the set of all x € X such that the rank of the isotropy group G, is at least
rk(G) — 1.
moreover i%(SW) consists of all tuples (f,--- , f) where f € SW.

The proof uses a sharper form of the lemma [2.5

Example 2.11. Let X be the G-orbit of A € g*, we may assume that A € t7, let u : X — g* be the inclusion
map, hence u(XT)Nt* = {A} and pu(X;)Nt* = W - A, then the previous theorem reduces to Hj(GA) = SW»
which follows more directly from

HG(GA) = Hg(G/Gy) = Hg, (pt)
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