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1. Introduction

This is a study note for equivariant cohomology based on Brion’s paper [Bri98] and the book by Bernstein-
Lunts, Brion’s paper is on the topological setting and Bernstein-Lunts’ book works with the equivariant
derived category.

2. Topological setting

2.1. Equivariant cohomology. We want to find explicit description of cohomology ring of certain mani-
folds with group actions which arise in representation theory, e.g. homogeneous spaces, compact multiplicity
free spaces.

In this section, we will assume that k = Q, X a topological space, H∗(X) = H∗(X,Q), H∗(X) is a graded
Q-algebra. f : X → Y continuous map between topological spaces will induce f∗ : H∗(Y, k) → H∗(X, k).
Given X with a topological group G-action, we will say X is a G-space.

There exists a principal G-bundle
p : EG −→ BG

EG is contractible, such a bundle is universal among principal G-bundles. G acts on X ×EG diagonally and
the quotient X ×G EG := X × EG/G exists, we define

H∗
G(X, k) := H∗(X ×G EG, k)

In particular, if X is a point, we get

H∗
G(pt) = H∗(EG/G) = H∗(BG, k)

the projection px : X × EG → EG/G is a projection with fiber X. H∗
G(X) is an algebra over H∗

G(pt).
Let’s consider some special cases:
i) If G acts trivially on X, then X ×G EG = X ×BG, by Kunneth isomorphism we have

H∗
G(X) = H∗(X)×H∗

G(pt)

ii) If G acts on X and X/G exists, then

π : X ×G EG −→ X/G

is a map with fiber EG/Gx at x ∈ X/G, for Gx the isotropy group of x ∈ X, Gx is finite and EG is
contractible, we have EG/Gx is Q-acyclic, and π∗ : H∗(X/G) → H∗

G(X) is an isomorphism.
iii) Let H be a closed subgroup of G, then EG/H exists and EG → EG/H is a universal bundle for H,

hence
H∗

G(G/H) = H∗(G/H ×G EG) = H∗
H(pt, k)

more generally, for Y a H-space, we have

H∗
G(G×H Y, k) ∼= H∗

H(Y, k)

Restriction to the fiber of pX defines an algebra homomorphism

ρ : H∗
G(X)/(H+

G (pt)) = H∗
G(X)⊗H∗

G(pt) k −→ H∗(X)

here (H+
G (pt)) is the ideal of H∗

G(X) generated by homogeneous elements of H∗
G(pt) of positive degree.

Our main result is that, for certain spaces X and for rational coefficients the map ρ is an isomorphism
and the equivariant cohomology algebra can be described completely 2.6, 2.10.
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Example 2.1. Let X be a space with G = S1-action, the action S1 × X → X makes H∗(X) into an
Λ = k[y]/y2 module with y of cohomological degree -1. Denote S = H∗(BS1), we have the following relation
between the equivariant cohomology and ordinary cohomology

H∗(X) = H∗
S1(X)⊗S k

H∗
S1(X) ∼= HomΛ(k,H

∗(X))

here we note X = pt ×pt/G X//S1 amd X//S1 = XS1

, where X//S1 = ES1 ×S1 X. The equivariant

cohomology for a S1-space X and ordinary cohomology of X are Koszul dual to each other.

Proposition 2.2. Let G be a compact connected Lie group and let T ⊂ G be a maximal torus with normalizer
N and with Weyl group W = N/T , let X be a G-space. Then

• The group W acts on H∗
T (X) and we have an isomorphism

H∗
G(X) ∼= H∗

T (X)W

in particular, we have H∗
G(pt) is isomorphic to SW for S the symmetric algebra of χ(T ) and SW the

ring of W -invariants in S.
• The map

S ∼= H∗
G(G/T ) → H∗(G/T )

is surjective and induces isomorphism S/(SW
+ ) → H∗(G/T ) where (SW

+ ) denotes the ideal of S
generated by all homogeneous W -invariants of positive degree.

• We have an isomorphism
S ⊗SW H∗

G(X) ∼= H∗
T (X)

in particular, we have H∗
T (G/T ) is isomorphic to S ⊗SW S.

Proof. For the first statement, we denote GC the complexification of G, let B be a Borel subgroup of GC

containing the compact torus T , by the Iwasawa decomposition, we have GC = GB, and G∩B = T , the map
G/T → GC/B is a homeomorphism, the flag manifold has a stratification by |W | strata, each isomorphic
to a complex affine space, it follows H∗(G/T ) vanishes in odd degrees. The Weyl group acts freely on G/T
with quotient G/N we have an isomorphism

H∗(G/N) ∼= H∗(G/T )W

moreover χ(G/N) = |W |−1χ(G/T ) = 1, we have H∗(G/N) vanishes in odd degrees and is one-dimensional
it follows that G/N is Q-acyclic. The fibration

X ×N EG → X ×G EG

with fiber G/N induces an isomorphism H∗
G(X) → H∗

N (X), we have a covering

X ×T EG → X ×N EG

with fiber W , hence H∗
G(X) = H∗

N (X) ∼= H∗
T (X)W .

For the second statement, applying the previous result to a point, we get

H∗(BG) = H∗
G(pt) = SW

the odd degree part is zero. The fibration

G/T ×G EG → BG

has fiber G/T with vanishing odd cohomology. The Leray spectral sequence degenerates and we obtain an
isomorphism

H∗(G/T ) ∼= H∗
G(G/T )/(H∗(BG)+) = H∗

T (pt)/(H
∗
T (pt)

W
+ ) = S/(SW

+ )

For the third statement, from the fibration

X ×T EG −→ X ×G EG

with fiber G/T , restriction to a fiber gives a ring homomorphism H∗
T (X) → H∗(G/T ) which is surjective,

the Leray spectral sequence degenerates, and

H∗
T (X) ∼= H∗

G(X)⊗H∗(G/T )
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For G and X as above, consider the restriction map

ρ : H∗
G(X)/(SW

+ ) → H∗(X)

ρ may not be surjective, there is an important class of G-spaces for which ρ is an isomorphism.

Proposition 2.3. Let G be a connected compact Lie group and let X be a compact Hamiltonian G-space,
the notaion as above, then the SW -module H∗

G(X) is free and the map ρ : H∗
G(X)/(SW

+ ) → H∗(X) is an
isomorphism.

As an example, we may consider the flag manifold, X = G/T , as a coadjoint orbit G/T is a Hamiltonian
G-manifold and the moment map is an inclusion, we recover the description of the cohomology ring of X
H∗(X) ∼= S/(SW

+ ).

2.2. Localization theorem. A powerful tool in the study of equivariant cohomology is the following local-
ization theorem due to Borel-Atiyah-Segal

Theorem 2.4. Let T be a compact torus and let X be a T -space which embeds equivariantly into a finite
dimensional T -module, then let iT : XT → X be the inclusion of the fixed point set, then the S-linear map

i∗T : H∗
T (X) −→ H∗

T (X
T )

becomes an isomorphism after inverting finitely many characters of T .

The proof uses the following lemma

Lemma 2.5. Let G be a connected compact Lie group and let Γ ⊂ G be a closed subgroup with centralizer
GΓ and X a symplectic G-manifold, then the fixed point set XΓ is a symplectic GΓ manifold and the normal
bundle NX,XΓ has a natural structure of a complex vector bundle.

If moreover the G-action on X is Hamiltonian with moment map µ, then the GΓ-action on XΓ is Hamil-
tonian with moment map: restriction of µ followed by restriction to gΓ.

As before, we consider a compact torus T and a T -space, we denote by iT : XT → X the inclusion of the
fixed point set. Under the condition that X is a T -space which admits an equivariant embedding into the
space of a finite-dimensional representation of T , if the S-module H∗

T (X) is free, then the map

i∗T : H∗
T (X) −→ H∗

T (X
T )

is injective,, and its image is the restriction of the images of the maps

i∗T,T ′ : H∗
T (X

T ′
) −→ H∗

T (X
T )

where T ′ runs over all subtori of codimension 1 of T .
When X is Hamiltoinan, we can obtain the following more precise version of the localization theorem

Theorem 2.6. Let X be a compact Hamiltonian T -spaces with finitely many fixed points x1 · · ·xm and
dim(XΓ′

) ≤ 2 for any subtori T ′ ⊂ T of codimension 1. Then via the map i∗T , the algebra H∗
T (X) is

isomorphic to the subalgebra Sm consisting of all m-tuples (f1, · · · , fm) such that: fj ≡ fk (mod χ), where

the fixed points xj and xk are in the same connected component of Xker(χ) for χ a primitive character of T .
Moreover, the cohomology algebra H∗(X) is the quotient of H∗

T (X) by the ideal generated by (f, f, · · · , f)
where f ∈ S is homogeneous of positive degree.

Example 2.7. Let G be a connected compact Lie group and T ⊂ G a maximal torus, and X = G/T the
flag manifold of the complexification of G. Denote x the base point of X, then the fixed point XT is the
orbit Wx, denote by Φ the root system of (G,T ). Let χ be a primitive character of T , if χ is not in Φ, then
Xker(χ) = XT . If χ is in Φ, then

Xker(χ) = Gker(χ)Wx

is a disjoint copy of |W |/2 complex projective lines joining the fixed points ωx and sωx for all ω ∈ W , so
we obtain from the theorem 2.6

H∗
T (G/T ) = {(fω)ω∈W | fω ∈ S, fω ≡ fsαω (mod α) ∀α ∈ Φ, ∀ω ∈ W}
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Remark 2.8. We note that the calculation of the equivariant cohomology of flag manifolds plays an important
role in the theory of Koszul duality for category O [Soe98].

2.3. Equivariant cohomology of multiplicity free manifolds. We want to generalize the description of
the equivariant cohomology in theorem 2.6 to the class of all compact multiplicity free Hamiltonian spaces.

Definition 2.9. A Hamiltonian G X is multiplicity-free if X is connected and the preimage under the
moment map of any coadjoint G-orbit consists of finitely many G-orbits.

If moreover X is compact, then the fibers of the moment map are connected and the multiplicity-free
amounts to: the preimage of each orbit under the moment map is an unique orbit.

Theorem 2.10. Let X be a compact multiplicity-free space under a connected compact Lie group G, then
with the notation above, the algebra H∗

G(X) is isomorphic via i∗T to the algebra Sm consisting of all m-tuples
(f1, · · · , fm) such that

• each fj is in SWj .
• fj ≡ ω(fk) (mod λj − ω(λk)) whenever ω ∈ W and the segment [λj , ω(λk)] is a component of

µ(X1) ∩ t∗, here X1 is the set of all x ∈ X such that the rank of the isotropy group Gx is at least
rk(G)− 1.

moreover i∗T (S
W ) consists of all tuples (f, · · · , f) where f ∈ SW .

The proof uses a sharper form of the lemma 2.5.

Example 2.11. Let X be the G-orbit of λ ∈ g∗, we may assume that λ ∈ t∗+, let µ : X → g∗ be the inclusion

map, hence µ(XT )∩ t∗ = {λ} and µ(X1)∩ t∗ = W ·λ, then the previous theorem reduces to H∗
G(Gλ) = SWλ

which follows more directly from

H∗
G(Gλ) = H∗

G(G/Gλ) = H∗
Gλ

(pt)
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