ENDOSCOPIC CLASSIFICATION OF REPRESENTATIONS

RUI CHEN

1. Introduction

This is a study note on Arthur's endoscopic classification based on the chapter "Endoscopic classification of representations" from the book [GH].

2. Results

In [Art13], Arthur proves the existence of functorial transfer with respect to the L-maps r. In particular, there is no genericity assumption in his work. Moreover, he gave a precise enough description of the fibers of the functorial transfer that he could classify the discrete spectrum of $L^2([G_n])$ in terms of the automorphic representations on H_N . We will explain these results in this section.

The main tool used in Arthur's result is the theory of **twisted endoscopy**, so one refers to Arthur's work and subsequent refinements as the **endoscopic classification** of representations.

In his book [Art13], Arthur gives a careful account of how to replace objects attached to the conjectural global Langlands dual group \mathcal{L}_F . We will not use this object and we will state Arthur's main result as directly as possible.

In the reminder of this section, we assume that $G_n \neq U_n$.

Theorem 2.1. Every irreducible subrepresentation of $L^2([G_n])$ admits a functorial transfer to $H_N(\mathbb{A}_F)$ with respect to r.

To make precise what one means by a functorial transfer, one needs more than the theory of the local Langlands conjecture as some irreducible subrepresentations of $L^2([G_n])$ need not to be tempered.

Let

$$L^2_{\operatorname{disc}}([G_n]) \subset L^2([G_n])$$

be the largest closed subspace that decomposes discretely under $G_n(\mathbb{A}_F)$, in view of the theorem 2.1, it is natural to partition $L^2_{\text{disc}}([G_n])$ into the fibers of the functorial transfer to $H_N(\mathbb{A}_F)$ and then try to describe the fibers. This is precisely what Arthur accomplished.

Let $\tilde{C}_c^{\infty}(G_n(\mathbb{A}_F))$ be $C_c^{\infty}(G_n(\mathbb{A}_F))$ except in the special case where G_n is SO_{2n} or SO_{2n}^* , in which case it is subalgebra of $C_c^{\infty}(G_n(\mathbb{A}_F))$ invariant under θ , the automorphism induced by conjugation.

We state the main classification result first:

Theorem 2.2. (Arthur) There is an $\tilde{C}_c^{\infty}(G_n(\mathbb{A}_F))$ -module isomorphism

$$L^2_{disc}([G_n]) \cong \bigoplus_{\psi \in \tilde{\Psi}_2(G_n)} \bigoplus_{\pi \in \tilde{\Pi}_{\psi}(\epsilon_{\psi})} \pi^{\oplus m_{\psi}}$$

For a cuspidal autormophic representation τ of $H_N(\mathbb{A}_F)$ and $m \in \mathbb{Z}$, let (τ, m) be the Speh representation, one says that τ is of **orthogonal type** if $L(s, \tau, \text{sym}^2)$ has a pole at s = 1 and of **symplectic type** if $L(s, \tau, \wedge^2)$ has a pole at s = 1.

Since

$$L(s,\tau,Sym^2)L(s,\tau,\wedge^2)=L(s,\tau\times\tau)$$

we have τ cannot be both orthogonal and symplectic.

The set $\tilde{\Psi}_2(G_n)$ is the set of automorphic representations of $H_N(\mathbb{A}_F)$ of the form

$$\boxtimes_{i=1}^d (\tau_i, m_i)$$

where

Date: September 2025.

1

- τ_i is a cuspidal automorphic representation of $H_{N_i}(\mathbb{A}_F)$.
- $\sum_{i=1}^{d} N_i m_i = N$. $\tau_i^{\vee} \cong \tau_i$ for all i.
- $\tau_i \cong \tau_j$ if and only if i = j.
- If ${}^LG_n^{\circ}$ is orthogonal (resp. symplectic), then (τ_i, m_i) is orthogonal (resp. symplectic).

The set $\tilde{\Psi}_2(G_n)$ is known as the set of **discrete global A-parameters** of G_n . The discrete global Aparameter is said to be generic if $m_i = 1$ for all i. In this case, we also refer to the parameter as a discrete generic global L-parameter.

For every $\psi \in \Psi_2(G_n)$, Arthur defines a finite 2-group \mathcal{S}_{ψ} and a character

$$\epsilon_{\psi}: \mathcal{S}_{\psi} \longrightarrow \{\pm 1\}$$

for every place v of F and every $\psi \in \widetilde{\Psi}_2(G_n)$ we define a representation

$$\psi_v: W'_{F_v} \times \mathrm{SL}_2(\mathbb{C}) \longrightarrow {}^L H_N$$

by

$$\psi_v = \bigoplus_{i=1}^d \operatorname{rec}(\tau_{iv}) \otimes \operatorname{Sym}^{m_i}$$

the extra $SL_2(\mathbb{C})$ factor occurring in the domain of ψ_v is known as the Arthur- SL_2 and plays a role similar to the representation of SL_2 that appear in the Hodge theory.

One proves that an $H_N(\mathbb{C})$ -conjugate of ψ_v factors through the L-map r and hence ψ_v defines a homomorphism

$$\psi_v: W'_{F_v} \times SL_2(\mathbb{C}) \longrightarrow {}^LG_n$$

these are examples of local A-parameters.

One shows in addition the existence of maps

$$loc_v: \mathcal{S}_{\psi} \longrightarrow \pi_0(\overline{\mathcal{S}}_{\psi_v})$$

where

$$\overline{\mathcal{S}}_{\psi_v} = C_{\hat{G}_n(\mathbb{C})}(\operatorname{im}(\psi_v))/Z^{\operatorname{Gal}_{F_v}}(\hat{G}_n(\mathbb{C}))$$

For each A-parameter, Arthur defines a set $\tilde{\Pi}(\psi_v)$ of irreducible admissible representations of $G_n(F_v)$ satisfying certain desiderata.

Any $\pi_v \in \Pi(\psi_v)$ comes with a character

$$\langle \pi_v, \cdot \rangle : \ \pi_0(\overline{\mathcal{S}}_{\psi_v}) \longrightarrow \mathbb{C}^{\times}$$

and thus for all $\pi \in \tilde{\Pi}(\psi)$, one obtain a character

$$\langle \pi, \cdot \rangle = \prod_{v} \langle \pi_v, \cdot \rangle$$

this allows us to define the global adelic A-packet

$$\tilde{\Pi}(\psi) := \{ \bigotimes_{v}' \pi_{v} : \pi_{v} \in \tilde{\Pi}(\psi_{v}) \text{ and } \langle \pi_{v}, \cdot \rangle = 1 \text{ for almost all } v \}$$

it consists of a set of admissible representations of $G_n(\mathbb{A}_F)$.

The last piece of the classification theorem is determining which occur in $L^2([G_n])$, this is provided by ϵ_{ψ} . One defines

$$\tilde{\Pi}_{\psi}(\epsilon_{\psi}) = \{ \pi \in \tilde{\Pi}(\psi) : \langle \pi, \cdot \rangle = \epsilon \}$$

Local L-packets for $H_{N_{F_{v_{\omega}}}}$ are singletons for all places v of F, at least in the almost tempered case. Hence global L-parameters into ${}^{L}H_{N}$ that are direct sums of discrete generic global L-parameters should correspond bijectively to isobaric sums

$$\boxtimes_{i=1}^k \pi_i$$

of cuspidal autormophic representations of $A_{GL_{n_i}}\backslash GL_{n_i}(\mathbb{A}_F)$ satisfying

$$\sum_{i=1}^{k} n_i = N$$

this bijection should be compatible with the local Langlands correspondence. On the other hand, a discrete generic global parameter into LG_n is a particular type of homomorphism $\mathcal{L}_F \longrightarrow {}^LH_N$ that factors through the L-map $r: {}^LG_n \to {}^LH_N$. Arthur identifies the set of discrete generic global parameters $\mathcal{L}_F \to {}^LH_N$ with the set of isomorphism classes of cuspidal representations of $A_{GL_N}\backslash GL_N(\mathbb{A}_F)$. He then isolates exactly which isobaric sums would have global L-parameters into LH_N that factors through $r: {}^LG_n \to {}^LH_N$ if we knew \mathcal{L}_F existed.

If we knew the existence of the global Langlands group \mathcal{L}_F , then the discrete generic global L-parameters $\rho: \mathcal{L}_F \to {}^L H_{2n+1}$ that factor through

$$r: {}^LSp_{2n} \longrightarrow {}^LGL_{2n+1}$$

would be precisely be those ρ whose image under the projection

$${}^LGL_{2n+1} \longrightarrow GL_{2n+1}(\mathbb{C})$$

fixes a symmetric bilinear form on \mathbb{C}^{2n+1} .

By a generalization of the Artin conjecture, the trivial representation occurs in $\operatorname{Sym}^2 \circ \rho$ if and only if $L(s,\operatorname{Sym}^2 \circ \rho)$ has a pole at s=1. The translation to the automorphic side of the conjectural global Langlands correspondence is the assertion that a cuspidal automorphic representation π on $GL_{2n+1}(\mathbb{A}_F)$ is a functorial transfer from $Sp_{2n}(\mathbb{A}_F)$ if and only if $L(s,\pi,\operatorname{Sym}^2)$ has a pole at s=1.

The line of reasoning as above also leads to the expectation that the cuspidal autormorphic representations π' of $A_{H_N}\backslash H_N(\mathbb{A}_F)$ that are functorial transfer from $G_n(\mathbb{A}_F)$ with respect to $r: {}^LG_n \to {}^LH_N$ are precisely those π' such that $L(s,\pi',r')$ has a pole at s=1

G_n	r'	
SO_{2n+1}	\wedge^2	
SO_{2n}	Sym^2	
SO_{2n}^*	Sym^2	
Sp_{2n}	Sym^2	
U_{2n}	$As_{E/F}$	\otimes
	$\eta_{E/F}$	
U_{2n+1}	$\mathrm{As}_{E/F}$	

References

- [Art13] James Arthur. The Endoscopic classification of representations orthogonal and symplectic groups, volume 61. American Mathematical Soc., 2013.
- [GH] Jayce R Getz and Heekyoung Hahn. An Introduction to Automorphic Representations with a view toward trace formulae.