
PERIODS OF EISENSTEIN SERIES

RUI CHEN

1. Introduction

This is a study note on periods of Eisenstein series, we presenting two methods here: The first method is
the soft method in the paper [Sak13] of Sakellaridis based on the philosophy of linking periods of automorphic
forms with local Plancherel formulas. The second method is the hard method in the [JLR99] paper.

2. Periods and local Plancherel formula

Let F be a number field and G a split connected reductive group defined over the ring of integers of F
( as we will see, the split condition is not necessary here once we have done the relevant local unramified

computation), assume that B(F ) has a single orbit on X̊(F ), we also assume that for almost all completions
Fv of F , the variety XFv

satisfies the various assumptions in the paper [Sak13]. We will denote by A(AF )
1

the intersection of the kernels of all homomorphisms: A(AF ) → Gm(Af ) → R×
+ where the first denotes an

algebraic character and the second denotes the absolute value.
Any idele class character of A(AF ) can be twisted by characters of the group A(AF )/A(AF )

1, and thus
lives in a rk(A)-dimensional complex manifold of characters. Let ω be such a family, for χ ∈ ω, we denote

I(χ) = Ind
G(AF )
B(AF )(χδ

1/2), the normalized principal series of G(AF ), considered as a holomorphic family of

vector spaces, that is we fix a notion of ”holomorphic sections” by identifying the underlying vector spaces
of the representations in the usual way.

For a meromorphic family of sections χ 7→ fχ ∈ I(χ), we have the principal Eisenstein series defined by
the convergent sum:

E(fχ, g) :=
∑

γ∈B(F )\G(F )

fχ(γg)

if ⟨α̌,Re(χ)⟩ >> 0 for all α ∈ ∆ and by meromorphic continuation to the whole ω.
LetH be a spherical group ofG over F , we would like to compute the period integral

∫
H(F )\H(AF )

E(fχ, h) dh,

of course, this integral may not be convergent, therefore we have to understand it as a distribution on the
Eisenstein spectrum of G, our goal is to compute the most continuous part of this distribution. We notice
that regularized periods of Eisenstein series abound in the literature, and different methods are suitable for
different purposes. The method in the paper [Sak13] is much softer than most, and it helps motivate the
general philosophy linking periods of automorphic forms with local Plancherel formulas.

For simplicity, we will discuss only the case where ω consists of the characters of A(AF )/A(AF )
1, however

the argument and the result hold for any family of idele class characters. In what follows, we use Tamagawa
measures for all groups.

Let Φ ∈ c-Ind
G(AF )
A(AF )1U(AF )(1), where c-Ind denotes compact induction, and write Φ in terms of its Mellin

transform with respect to the left A(AF )-action:

Φ(g) =

∫
̂A(AF )/A(AF )1

fχδ−1/2(g) dχ

where fχ ∈ I(χ) and dχ is Haar measure on the unitary dual of A(AF )/A(AF )
1, note that the unitary dual

of A(AF )/A(AF )
1 can naturally identified with the imaginary points ia∗R of the Lie algebra of the dual torus

via the exponential isomorphism.

Date: December 2024.

1



We can shift the contour of the integral for Φ and write

Φ(g) =

∫
exp(κ+ia∗

R)

fχ(g)dχ

for any κ ∈ a∗C. In particular, we can shift the domain of convergence of the Eisenstein sum and then we will
have: ∑

γ∈B(F )\G(F )

Φ(γg) =

∫
exp(κ+ia∗

R)

E(fχ, g) dχ

as a function of rapid decay on the automorphic quotient G(F )\G(AF ). We then integrate overH(F )\H(AF )∫
H(F )\H(AF )

∑
γ∈B(F )\G(F )

Φ(γh) dh =

=
∑

ξ∈[B(F )\G(F )/B(F )]

∫
Hξ(AF )\H(AF )

∫
Hξ(F )\Hξ(AF )

∫
exp(κ+ia∗

R)

fχ(ξah)dχ da dh

here [B(F )\G(F )/H(F )] denotes a finite set of representatives in G(F ) for the (B(F ), H(F ))-double cosets,
and Hξ := H ∩ ξ−1Bξ, similarly we will denote Bξ := B ∩ ξHξ−1 and we will let Y denote the B-orbit of
ξH on G/H.

For a fixed h ∈ H(AF ), the inner integral∫
Hξ(F )\Hξ(AF )

∫
exp(κ+ia∗

R)

fχ(ξah)dχda

is equal to

vol(Bξ(F )\Bξ(AF )
1) ·
∫
Bξ(AF )1\Bξ(AF )

∫
exp(κ+ia∗

R)

fχ(aξh)dχda

by abelian Fourier analysis, the last expression is equal to∫
δ−1/2η−1

Y exp(ia∗
R)

fχ(ξh) dχ

where we have taken into account that exp(a∗Y ) where a
∗
Y is the Lie algebra of A∗

Y , considered as a subgroup
of the group of characters exp(a∗) of A(AF )/A(AF )

1, is the orthogonal complement of the image of Bξ(AF ).
To determine the most continuous part of the H-period, it is enough to consider those ξ which correspond

to the orbits Y of maximal rank, we can move the contour of integration, this time to exp(κY + ia∗Y,R), where

κY is deep in the region so that the morphisms ∆Y
χ,v are convergent.

We can interchange the order of integration to express the contribution of the orbit Y as∫
exp(κY +ia∗

Y,R)

∫
Hξ(AF )\H(AF )

fχ(ξh) dhdχ

and the new inner integral is equal to
∏

v ∆Y,Tam
χ,v , where the exponent ”Tam” stands to show that we are

using the Tamagawa measures, rather than the usual measure used in the paper [Sak13] to derive the formula
for the spherical functions.

The following lemma tells us how ∆Tam
χ,v and ∆χ are related

Lemma 2.1. We have:

∆Tam
χ,v = Qv∆χ,v

Fix a finite set of places S, including the infinite ones and those finite places where our assumptions on
the spherical variety X = H\G do not hold, such that we have a factorization: fχ =

∏
v fχ,v where fχ,v

being the standard Kv-invariant functions: f
0
χ,v(bk) = χδ1/2(b) ( this is usually denoted by ϕK,χ).

From the previous lemma 2.1, we have

∆Tam
χ,v (f0χ,v) = Qv∆χ,v(f

0
χ,v) =

∏
α̌>0

1− q−1eα̌

1− eα̌
(χ)Ωχ,v(x0) =

∏
α̌>0

1− q−1eα̌

1− eα̌
(χ) · L

1
2
χ,v
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recall that L
1
2

X,v(χ) = cv · βv(χ) where cv is a quotient of products of local values for the Dedekind zeta
function of F and βv is a quotient of products of Dirichlet L-values which depend on χ. If we consider
the product

∏
v/∈S cv it may not converge in general. However, we can make sense of it by considering

the leading term of its Laurent expansion, when considered as a specialization of a product/quotient of
translates of ζS . We should denote (cS)∗ whenever cS formally appears in the product, similarly we will

denote (L
1
2 ,S

X )∗ = (cS)∗ ·
∏

v/∈S βv(χ). Therefore we get

Theorem 2.2. The period integral of∑
γ∈B(F )\G(F )

Φ(γg) =

∫
exp(κ+ia∗

R)

E(fχ, g) dχ

over H(F )\H(AF ) is equal to∫
exp(κ+ia∗

X,R)

(L
1
2 ,S

X )∗
∑

[W/W(X)]

(j̃Sω (χ)
∏
v∈S

∆Y,Tam
ωχ, v (fωχ,v) dχ

plus terms which depend on the restriction of fχ, as a function of χ, to a subvariety of smaller dimension.
Here [W/W(X)] denotes a set of representatives of minimal length for W/W(X)-cosets, κ ∈ ρ(X) + a∗X,C is
deep in the domain of convergence of ∆χ, and fχ the Mellin transform of Φ with respect to the normalized
A(AF )/A(AF )

1-action, is assumed to be factorizable with factors f0χ,v for v /∈ S.

3. Regularized periods of Eisenstein series

3.1. Introduction. Let G be a reductive group over a number field F , and let H ⊂ G be a ”nice” subgroup
( e.g. spherical), then the following period integral

ΠH(φ) =

∫
H(F )\H(A)1

φ(h) dh

converges absolutely for any cusp form φ on G(A). The first goal of the JLR paper is to develop a method for
defining and computing ΠH(φ) for φ a more general automorphic form such as an Eisenstein series, in this
case, the integral need not converge and we have to define it by means of a regularization procedure. Their
second goal is to use this regularized period to obtain explicit formulas for the convergent period ΠH(ΛTE)
for ΛTE a truncated Eisenstein series.

Let us recall some motivation, the periods ΠH(ΛTE) are of interest because they appear in the relative
trace formula as a role analogous to that played by inner product of truncated Eisenstein series in the Arthur-
Selberg trace formula. They arise when one computes the contribution from the most continuous spectrum
of the relative trace formula. The RTF provides a general tool for studing distinguished representations.
In many cases, it should be possible to characterize the H-distinguished cuspidal representations as images
with respect to a functorial transfer to G from a third group G′, general result of this type should eventually
follow from a comparison of suitable relative trace formulas on G and G′.

Let’s now describe their results in greater detail. They define a regularized period ΠH(φ) for H ⊂ G =
ResE/FH with E/F quadratic using Arthur’s truncation operators. They used a mixed truncation operator

ΛT
m which is a intermediate truncation between the truncation onG and the truncation onH. This truncation

is best suited to the study of period integrals. In the next step, they computed the period of a truncated
Eisenstein series ∫

H(F )\H(A)1
ΛT
mφ(h) dh

in terms of the regularized periods of the constant term of φ.
In their last two sections, they calculated more explicit result for H = GLn/F . They obtain an explicit

formula expressing ΠH(ΛT
mE(g, φ, λ)) for any cuspidal Eisenstein series in terms of certain linear functionals

J(ξ, φ, λ) which they call intertwining periods.
The name ”intertwining period” comes from the following reasons: first the map φ→ J(ξ, φ, λ) is H(A)-

invariant functional on IndGP (σ ⊗ eλ), hence by Frobenious reciprocity, defines an intertwining operator.
Furthermore, the J-functionals have several properties in common with the standard intertwining operators,
their explicit formula for the period integral of truncated Eisenstein series is analogous to Langlands’ formula
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for the inner product of cuspidal Eisenstein series. Finally, like the standard intertwining operators, the J-
functionals can be merimorphically continued and satisfy a set of functional equations. The functional
equations take the form

J(ξ, φ, λ) = J(sξs−1,M(s, λ)φ, sλ)

For example in the n = 2 case, the functional equation reduces to

J(ξ, φ, λ) = m(ξ, λ)J(ξ, φ,−λ)

where m(ξ, λ) = L(λ, 1E)/L(λ+ 1, 1E).
The regularization of integrals is also useful in providing a more conceptual approach to the formulas for

inner product of truncated Eisenstein series that occur in the Arthur-Selberg trace formula. Then regularized
integral can be used to derive a formula for the convergent integral∫

G(F )\G(A)1
ΛTφ(g) dg

apply to the case G ⊂ G×G, the resulting formula can be viewed as a generalization of Langlands’ formula
for the inner product of truncated cuspidal Eisenstein series.

3.2. The regularized period. In this section, we will assume H = GLn/F and G = ResE/FGLn for E/F
a quadratic extension of number fields.

The next theorem describes the regularized period of a cuspidal Eisenstein series. We will write x 7→ x
the conjugation of E over F and if π is a representation of G(AE) or a Levi subgroup, we will write π for the
representation g 7→ π(g). Let P be the parabolic subgroup of H corresponding to the partition (n1, · · · , nr)
of n. Assume P is a proper subgroup if σ = σ1 ⊗ σ2 ⊗ · · · ⊗ σr is a representation of ME(AE)

1 and λ ∈ U∗
P ,

we write σ(λ) for the representation that extends σ to ME(AE) by σ(λ)(am) = e⟨λ,HPE
(a)⟩σ(m), we will

write σ∗ for the contragredient of σ.

Theorem 3.1. Let φ ∈ AP (G)σ where σ = σ1 ⊗ σ2 ⊗ · · · ⊗ σr is a cuspidal representation of ME(AE)
1

and let E(φ, λ) = E(g, φ, λ) be the associated Eisenstein series, suppose E(φ, λ) is regular at λ = λ0 and
ΠG/H(E(φ, λ0)) is defined and non-zero. Then either r = 1 and φ = E(φ, λ0) is a distinguished cusp form
on G(AE) or r = 2 and σ∗

2 = σ1. In this case, if ⟨Re λ, α∨⟩ >> 0 for the unique root α ∈ ∆P , then the
period is given by the following absolutely convergent integral

ΠG/H(E(φ, λ)) =

∫
Hη(F )\H(A)1

e⟨λ+ρP ,HPE
(ηh)⟩ φ(ηh) dh

where ηη−1 = ξ is the unique element of Ω(M,M), furthermore ΠG/H(E(φ, λ)) extends to a meromorphic
function of λ.

Proposition 3.2. Let ξ =

(
0 1m
1m 0

)
, we have Mη = {m = diag(g, g) : g ∈ GLm(E) }, for ⟨Re λ, α∨⟩ >>

0, we have ΠG/H(E(φ, λ)) =∫
Hη(A)\H(A)

e⟨λ+ρP ,HPE
(ηh)⟩(

∫
Mη(F )\Mη(A)1

φ(mηh) dm )dh

where the integral above is absolutely convergent.

3.3. Intertwining periods. Fix a Levi subgroup M of H and a cuspidal representation σ of ME(AE)
trivial on APE

, for ξ ∈ Ω2(M,M), φ ∈ AP (G)σ and λ ∈ (U∗
P,C)

−
ξ , we have the following definition

Definition 3.3. The following intertwining period attached to ξ is well defined

J(ξ, φ, λ) =

∫
Hη(A)\H(A)

e⟨λ+ρP ,HPE
(ηh)⟩(

∫
Mη(F )\Mη(A)1

φ(mηh) dm )dh

where η ∈ G(E) is any element satisfying ηη = ξ, recall that Pη =MηNη, Hη = ηPη−1 ∈ Pη(A).
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Example 3.4. Let the notation as in theorem 3.1, from proposition 3.2 we have

ΠG/H(E(φ, λ)) =

∫
Hη(F )\H(A)

e⟨λ+ρP ,HPE
(ηh)⟩φ(ηh) dh = J(ξ, φ, λ)

where Hη = η−1Mηη and Mη ∈ {diag(g, g) : g ∈ GLm(E)}.

Now let’s consider a local analogue of the intertwining period in the unramified case, assume n = 2m and
let P = MN be the standard parabolic subgroup of type (m,m), we use the notation as before, then ξ is
a non-trivial element in Ω(M,M) and η ∈ GLn(E) satisfies ηη−1 = ξ, assume σ = σ1 ⊗ σ2 is a cuspidal
representation of ME(AE) and such that σ2 ∼= σ∗

1, then there is a unique linear form L′ on the space of σ
invariant under Mη(A) namely

L′(φ) =

∫
Mη(F )\Mη(A)1

φ(m) dm

for j = 1, 2, we choose an identification of σj with a restricted tensor product ⊗′σjv, this identification
presupposes the choice ofKv-fixed vectors xjv in the space of σjv for almost all v. Thus σjv is a representation
of GLm(Ev) where Ev = E ⊗ Fv, we set σv = σ1v ⊗ σ2v, since σ2v ∼= σ∗

1v, there exists a non-zero linear map

L′
v : σ1v ⊗ σ2v −→ C

invariant under Mη, it is also unique up to scalar multiples, we may assume L′
v(x1v ⊗ x2v) = 1 for almost

all v. Then for a suitable normalization of L′, we have

L′(φ) =
∏
v

L′
v(φv)

where φ corresponds to a pure tensor ⊗φv.
In the global theory we used unnormalized induction, it is more convenient to use the normalized induction

for the local computation, we now have

J(ξ, φ, λ) =

∫
Hη(A)\H(A)

e⟨λ,HPE
(ηh)⟩L(φ)(ηh) dh

we have the local intertwining period

Jv(ξ, φv, λ) =

∫
Hη(Fv)\H(Fv)

e⟨λ,HPE
(ηhv)⟩Lv(φv)(ηhv) dhv

for λ ∈ (U∗
P )

−
ξ , then we have the following factorization

J(ξ, φ, λ) =
∏
v

Jv(ξ, φv, λ)

the global intertwining period is equal to the product of local intertwining periods, combined with example
3.4, we are able to calculate the regularized period of Eisenstein series.

For the rest of this section, we will assume that v is a finite place such that σjv is unramified for j = 1, 2,
we will compute the value of Jv(ξ, φv, λ), we will recall the definition of the Asai L-function of an unramified
representation of GLm(E), here we view GL(m)E as a group over F . Its L-group is

LGL(m)E = GLm(C)×GLm(C)⋊Gal(E/F )

where the non-trivial element σE/F ∈ Gal(E/F ) acts on the connected component by interchanging the
factors. Let V = Cm and let T be the automorphism of V ⊗V sending x⊗y to y⊗x, we identify GL(V ⊗V )
with GLm2(C) and define

ρA : LGL(m,E) −→ GLm2(C)
where ρA(g× h× 1) = g⊗ h and ρA(1× 1× σE/F ) = T , write ωE/F for the character of LGL(m)E obtained
by pulling back the non-trivial character of Gal(E/F ). We have the following equality

L(σv, s, ρA)L(σv, s, ρA ⊗ ωE/F ) = L(s, σv × σv)

where L(s, σv × σv) is the Rankin-Selberg convolution of σv and σv. We will denote ρ∗A the contragredient
representaton of ρA.

5



We now begin our computation for Jv(ξ, φv, λ) for φv fixed by Kv, suppose σ1v is the unramified

constituent of Ind
GLm(Ev)
Bm(Ev)

χ where Bm is the standard upper-triangular Borel subgroup of GL(m) and

χ = (χ1, · · · , χm) is an m-tuple of unramified characters of E∗
v . Then σ2v is the unramified constituent

of Ind
GLm(Ev)
Bm(Ev)

χ−1, let χ∗ be the character if the upper triangular Borel subgroup B(Ev) of G(Ev) defined

by the n-tuple (χ1, · · · , χm, χ
−1
1 , · · · , χ−1

m ), we identify Ind
GLm(Ev)
Bm(Ev)

χ⊗ Ind
GLm(Ev)
Bm(Ev)

χ−1 with Ind
M(Ev)
B(Ev)

χ∗, for

ψ in the space of Ind
M(Ev)
B(Ev)

χ∗, set

L′
v(ψ) =

∫
Bη(Fv)\Mη(Fv)

ψ(m) dm

We identify πv with the unramified constituent of the induced representation Σv = Ind
G(Ev)
B(Ev)

χ∗ and on

the space of Σv the functional Lv can be written as

Lv(φ)(g) =

∫
Bη(Fv)\Mη(Fv)

φ(mg) dm

where dm is the semi-invariant measure on Bη\Mη(Fv). The local intertwining period can be written as

Jv(ξ, φ, λ) =

∫
Hη(Fv)\H(Fv)

e⟨λ, HPE
(ηh)⟩ Lv(φ)(ηh) dh

=

∫
Hη(Fv)\H(Fv)

∫
Bη\Mη(Fv)

e⟨λ,HPE
(ηh)⟩ φ(mηh) dm dh

=

∫
B′

η(Fv)\H(Fv)

e⟨λ,HPE
(ηh)⟩ φ(ηh) dh

where B′
η(Fv) = H(Fv) ∩ η−1BE(Ev)η.

We have the following theorem on the unramified computation

Theorem 3.5. Assume v /∈ S and let φv be the essential vector, for a suitable normalization of measures
we have

Jv(ξ, φv, λ) =
L(λ, σ1v, ρ

∗
A)

L(λ+ 1, σ1v, ρ∗A ⊗ ωE/F )

here the essential vector is the unique function φv in the space Σv which is right invariant under GLn(Ov)
where Ov is the ring of integers in Ev and satisfies φv(e) = 1.

We first prove this theorem in the case v splits in E, then we may identify G(Ev) with GLn(Eω1
) ×

GLn(Eω2) where ω1, ω2 are the places of E dividing v, we have σjv = σjω1 ⊗ σjω2 where σ1ω1
∼= σ∗

2ω2

and σ1ω2
∼= σ∗

2ω1
. Conjugation acts by (x, y) 7→ (y, x) and H(Fv) is imbedded diagonally. We may take

η = (1, ξ), then Hη(Fv) is the Levi factor of the parabolic subgroup P =MN of type (m,m) and B′
η(Fv) =

B(Fv) ∩Hη(Fv), use the Iwasawa decomposition, H(Fv) = B′
η(Fv)N(Fv)KF , we obtain

Jv(ξ, φ, λ) =

∫
B′

η(Fv)\H(Fv)

e⟨λ,HP (ηh)⟩ φ(ηh) dh

=

∫
N(Fv)

e⟨λ,HP (ξn)⟩φ2(ξn) dn

in other words Jv coincides with the standard intertwining operator applied to the essential vector in

Ind
Gω2

Pω2
(σ1ω2

⊗ σ2ω2
). By the Gindikin-Karpelevic formula, the integral is equal to

L(λ, σ∗
1ω2

⊗ σ2ω2)

L(λ+ 1, σ∗
1ω2

⊗ σ2ω2
)
=

L(λ, σ∗
1ω2

⊗ σ∗
1ω1

)

L(λ+ 1, σ∗
1ω2

⊗ σ∗
1ω1

)

and this is equal to
L(λ,σ∗

1v,ρA)
L(λ+1,σ∗

1v,ρA⊗ωE/F ) .

Remark 3.6. The unramified computation here is exactly the unramified computation needed for proof of
the Casselman-Shalika formula.
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We now assume that v remains prime in E, we drop v from the notation and first consider the case
H = GL2(F ) and G = GL2(E) where E/F is a unramified extension of p-adic fields, we also assume p ̸= 2.

Proposition 3.7. For T = H ∩ η−1Bη, and φ the essential vector in the unramified representation of
GL2(E) with Langlands class (

q
λ/2
E 0

0 q
−λ/2
E

)
normalize the measure by assigning measure 1 to the ring of integers OF , then we have∫

T\H
φ(ηh) dh = ||i||1/2 1 + q−λ−1

1− q−λ

In general, we have the following proposition, which is the inert case of theorem 3.3

Proposition 3.8. Let E/F be an unramified quadratic extension of p-adic fields and let σ1 be an unramified
representation of GLm(E), then for the unique K-invariant φ ∈ IP (σ1 × σ∗

1), we have

J(ξ, φ, λ) =
L(λ, σ1, ρ

∗
A)

L(λ+ 1, σ1, ρ∗A ⊗ ωE/F )

Proof. In the above notation, suppose that σ1 = Ind
GLm(E)
Bm(E) χ where χ = (χ1, · · · , χm) where χi = | · |λi

E , we

can view φ as an element of IndGnv

Bnv
(χ1, · · · , χn, χ

−1
1 , · · · , χ−1

n ), to compute

Jv(ξ, φ, λ) =

∫
B′

η(Fv)\H(Fv)

e⟨λ,HBE
(ηh)⟩ φ(ηh) dh

we shall regard it as a local intertwining period for an Eisenstein series and reduce to the n = 2 case using
the functional equation. Let ξ′ = (1, 2) · · · (2n−1, 2n), then ξ′ is a minimal involution and ξ = ω−1ξ′ω where
ω is defined by ω(i) = 2i− 1 and ω(i+ n) = 2i for i = 1, · · ·n. Then ω has the reduced decomposition

ω = (s2n−2)(s2n−4s2n−3) · · · (s4 · · · snsn+1)(s2 · · · sn−1sn)

we observe we have the following local functional equation proved by rewriting the absolutely convergent
integral

Jv(ξ, φ, λ) = Jv(ξ
′,M(ω, λ)φ, ωλ)

the right hand side can be written as a local intertwining period with respect to the group GL2 × · · · ×GL2

(m times) and induction from (χ1, χ
−1
1 · · ·χm, χ

−1
m ), by proposition 3.7, we have

J(ξ′, φ, λ) =

n∏
i=1

(1− q−λi

E q−λ
F )−1(1 + q−λi

E q
−(λ+1)
F )

by the formula of Gindikin and Karpelevic, M(ω, λ)φ = c(λ)φ where

c(λ) =
∏

1≤i<j≤n

(1− q
−λi−λj

E q−λ
E )−1

(1− q
−λi−λj

E q
−(λ+1)
E )−1

compare this with the explicit formula for the Asai L-function, we get our result. □

Remark 3.9. It will be interesting to give a more systematic formulation of the local functional equation for
the unramified computation for Galois periods in general.

3.4. Main theorem.

Theorem 3.10. Let φ ∈ APE
(G)σ where σ is a cuspidal representation of ME(AE), let E(g, φ, λ) be the

associated Eisenstein series, then as a meromorphic function of λ∫
H(F )\H(A)1

ΛT
mE(h, φ, λ) dh

is equal to ∑
(Q,s)∈G(P,σ)

vQ
e⟨(sλ)Q,T ⟩∏

α∈∆Q
⟨(sλ)Q, α∨⟩

J(ξQ,M(s, λ)φ, (sλ)QP ′)
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Proof. Since σ is cuspidal, the Eisenstein series EQE
(g, φ, λ) vanishes unless Q contains an associate of P

and we obtain ∫
H(F )\H(A)1

ΛT
mE(g, φ, λ) dg

=
∑
Q

(−1)d(Q)−d(H)

∫ ∗

Q(F )\H(A)1
EQE

(g, φ, λ)τ̂Q(HQE
(g)− T ) dg

where EQE (g,M(s, λ)φ, λ) is the Eisenstein series on QE induced from the function M(s, λ)φ. We must
therefore compute the integrals∫ ∗

Q(F )\H(A)1
EQE (g,M(s, λ)φ, sλ) τ̂Q(HQE

(g)− T ) dg

for s ∈ Ω(P,Q), by definition is equal to an period ΠMQE
/MQ of EQE which is an Eisenstein series for the

parabolic subgroup PE ∩MQE
of the group MQE

, and

(3.1)

∫ ∗

UQ

e⟨(sλ)Q, 2X⟩τ̂Q(2X − T ) dX

By theorem 3.1 applied to a product of linear group, we get ΠMQE
/MQ vanishes unless (Q, s) belongs to

G(P, σ). If (Q, s) ∈ G(P, σ), then it is equal to the following intertwining period integral for the group MQ:

JMQ(ξQ,M(s, λ)ϕ)KF , (sλ)QP ′)

this is the same as the following intertwining period for the group G

J(ξQ,M(s, λ)ϕ, (sλ)QP ′)

on the other hand, we have∫ ∗

UQ

e⟨(sλ)Q, 2X⟩τ̂Q(2X − T ) dX = vQ
e⟨(sλ)Q,T ⟩∏

α∈∆Q
⟨(sλ)Q, α∨⟩

□
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[JLR99] Hervé Jacquet, Erez Lapid, and Jonathan Rogawski. Periods of automorphic forms. Journal of the American Mathe-

matical Society, 12(1):173–240, 1999.

[Sak13] Yiannis Sakellaridis. Spherical functions on spherical varieties. American Journal of Mathematics, 135(5):1291–1381,
2013.

8


	1. Introduction
	2. Periods and local Plancherel formula
	3. Regularized periods of Eisenstein series
	3.1. Introduction
	3.2. The regularized period
	3.3. Intertwining periods
	3.4. Main theorem

	References

