THE DUAL GROUP OF A SPHERICAL VARIETY

RUI CHEN

1. The dual group of a spherical variety

1.1. Introduction. This is a study note for the Knop-Schalke's paper [KS17], they proved the existence of the adapted map as conjectured in [SV17] in great generality.

1.2. Root systems.

Proposition 1.1. Let Σ be a subset of an Euclidean vector space V, assume that V is contained in some open half-space and

$$\langle \sigma, \tau^{\vee} \rangle = \frac{2(\sigma, \tau)}{(\tau, \tau)} \in \mathbb{Z}_{\leq 0}$$

for all $\sigma \neq \tau \in \Sigma$, then Σ is the basis of a finite root system.

Let $(\Lambda, S, \Lambda^{\vee}, S^{\vee})$ be the based root datum of the connected group G and $\alpha \mapsto \alpha^s$ be an involution on S, with ${}^{s}\alpha^{\vee} := ({}^{s}\alpha)^{\vee}$ we get an involution on S^{\vee}

Definition 1.2. The involution s is called a folding if for all $\alpha, \beta \in S$

•
$$\langle \alpha, {}^{s} \alpha^{\vee} \rangle = 0$$
 whenever $\alpha \neq {}^{s} \alpha$

• $\langle \alpha - {}^{s} \alpha, \beta^{\vee} + {}^{s} \beta^{\vee} \rangle = 0.$

1.3. Weak spherical datum.

Definition 1.3. A weak spherical datum with respect to a root datum $\mathcal{R} = (\Lambda, S, \Lambda^{\vee}, S^{\vee})$ is a triple (χ, Σ, S^p) where $\chi \subseteq \Lambda$ and $\Sigma \subseteq \chi$, $S^p \subseteq S$ are subsets such that the following axioms are satisfied

• For every $\sigma \in \Sigma$ there is a subset $|\sigma| \subseteq S$ such that

$$\sigma = \sum_{\alpha \in |\sigma|} n_{\alpha} \alpha$$

such that σ is a weak spherical root.

- $\langle \chi, \alpha^{\vee} \rangle = 0$ for $\alpha \in S^p$.
- Let $\sigma = \alpha + \beta \in \Sigma$ of type D_2 then $\langle \chi, \alpha^{\vee} \beta^{\vee} \rangle = 0$.
- Let $\alpha, \beta \in S$ with $\alpha, \alpha + \beta \in \Sigma$, then $\langle \beta, \alpha^{\vee} \rangle \neq -1$.

The advantage of working with weak spherical datum is that one can attach weak spherical datum to any G-variety

Proposition 1.4. Let X be a G-variety, then (χ, Σ, S^p) is a weak spherical datum where

$$\Sigma := \{ \sigma_{norm} \mid \sigma \in \Sigma(X) \}, \quad \chi := \chi(X) + \mathbb{Z}\Sigma$$
$$S^p := \{ \alpha \in S \mid P_{\alpha}x = Bx \text{ for } x \text{ in a dense subset of } X \}$$

Lemma 1.5. Let (χ, Σ, S^p) be a weak spherical datum and $\sigma, \tau \in \Sigma$ be distinct, then $(\sigma, \tau) \leq 0$.

Following [SV17], we are going to associate certain roots of G to every spherical root $\sigma \in \Sigma$.

Lemma 1.6. Let $\sigma \in \Sigma \setminus \Phi$, then there exists a unique set $\{\gamma_1, \gamma_2\}$ of positive roots such that

- $\sigma = \gamma_1 + \gamma_2$.
- γ₁ and γ₂ are strongly orthogonal.
 γ₁[∨] γ₂[∨] = δ₁[∨] δ₂[∨] for δ₁, δ₂ ∈ S.

Date: June 2024.

The roots γ_1, γ_2 will be called associated to σ

Definition 1.7. For $\sigma \in \Sigma$, we let

$$\sigma^{\wedge} := \begin{cases} \{\sigma^{\vee}\} & \sigma \in \Phi \\ \{\gamma_1^{\vee}, \ \gamma_2^{\vee}\} \ \sigma, \gamma_1, \gamma_2 \text{ as in previous lemma} \end{cases}$$

1.4. Existence of the adapted map.

Theorem 1.8. Let (χ, Σ, S^p) be a weak spherical datum, then $(\chi, \Sigma, \chi^{\vee}, \Sigma^{\vee})$ is a based root datum.

Proof. This follows from proposition 1.1 and lemma 1.5.

Theorem 1.9. Let $S = (\chi, \Sigma, S^p)$ be a weak spherical datum, then there exists a unique connected reductive subgroup $G_S^{\wedge} \subset G^{\vee}$ containing T^{\vee} such that Σ^{\wedge} is its set of simple roots.

Definition 1.10. Let $S = (\chi, \Sigma, S^p)$ be a weak spherical datum, a homomorphism $\varphi : G_S^{\vee} \to G^{\vee}$ is called adapted if it factors through $G_S^{\wedge} \subseteq G^{\vee}$ and if it compatible with the map on maximal tori

To show the existence of adapted homomorphisms we observe that the sets σ^{\wedge} for $\sigma \in \Sigma$ partition Σ^{\wedge} into subsets of size at most 2, hence there exists a unique involution acting on Σ^{\wedge} with orbits σ^{\wedge} .

Lemma 1.11. The action of s on Σ^{\wedge} is a folding in the sense of definition 1.2.

Theorem 1.12. Let $S = (\chi, \Sigma, S^p)$ be a weak spherical datum, then there exists an adapted homomorphism $\varphi : G_S^{\vee} \to G^{\vee}$.

This follows from a lemma on folding.

References

- [KS17] Friedrich Knop and Barbara Schalke. The dual group of a spherical variety. Transactions of the Moscow Mathematical Society, 78:187–216, 2017.
- [SV17] Yiannis Sakellaridis and Akshay Venkatesh. Periods and harmonic analysis on spherical varieties. Société mathématique de France, 2017.