CATEGORICAL PLANCHEREL FORMULA

RUI CHEN

1. INTRODUCTION

This is my note for Akshay Venkatesh's lecture on categorical Plancherel formula- Plancherel formula as formulated in the sheaf language.

2. Explicit Plancherel formula

In this section, we will assume $F = \mathbb{F}_q((t))$ and $K = PGL_2(\mathcal{O}) \subset G = PGL_2(F)$. Let $\mathscr{T} = G/K$, this \mathscr{T} has a structure of q + 1-valent tree.

Let T_n be the Hecke operator corresponding to the n + 1-dimensional representation of the dual group SL_2 , it acts on the functions on \mathscr{T} by

$$T_n f(x) = \sum_y f(y)$$

where we sum over y whose distance to x lies in $\{n, n-2, n-4, \dots\}$.

Using the Cartan decomposition, we can view $f \in K \setminus \mathscr{T}$ as $f : \mathbb{Z}_{\geq 0} \to \mathbb{C}$, the inner product will be taken as $\langle f, g \rangle = \sum_{x \in \mathscr{T}} f(x) \overline{g(x)}$.

Using the formula for T_n , we can compute that $\langle T_n \delta_0, \delta_0 \rangle = 1$ if n is even and = 0 if n is odd.

From this we deduce that there is a unique measure μ on the conjugacy classes in SU_2 such that

$$\langle \frac{T_n}{q^{n/2}} \delta_0, \delta_0 \rangle = \int \chi_n \ d\mu$$

where χ_n is the character of the n + 1 dimensional irreducible representation and up to a constant factor, μ equals to (q-character of $\mathfrak{sl}_2 \times$ Haar measure).

Here if g is an automorphism of an affine complex algebraic variety Y, commuting with a \mathbb{G}_m -action on Y, we can define its q-character as

$$\chi_q(g) =$$
" trace of $g \times q^{-1/2}$ on $\mathbb{C}[Y]$ " = $\sum_i q^{-i/2} \operatorname{trace}(g|\mathbb{C}[Y]_i)$

where $\mathbb{C}[Y]_i$ is the *i*-th graded piece for the \mathbb{G}_m action on $\mathbb{C}[Y]$.

Example 2.1. We have

• When $x \in \mathbb{C}^*$ acts on $Y = T^* \mathbb{A}^1$ its q-character is

$$\frac{1}{(1-q^{-1/2}x)(1-q^{-1/2}x^{-1})}$$

• when $g = \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}$ acts on $Y = T^* \mathbb{A}^2$, its *q*-character is

$$\frac{1}{(1-q^{-1/2}x)^2(1-q^{-1/2}x^{-1})^2}$$

• when $g \in SL_2(\mathbb{C})$ as above act via the adjoint action on $Y = \mathfrak{sl}_2$ with the action of $\lambda \in \mathbb{G}_m$ to scale to λ^2 , its *q*-character is

$$\frac{1}{(1-q^{-1})(1-q^{-1}x^2)(1-q^{-1}x^2)}$$

Date: June 2024.

3. CATEGORICAL PLANCHEREL FORMULA

Let k be a local field and G a connected reductive group over k, let X be a variety with G-action, we assume that $M = T^*X$ is hyperspherical, and hence its hyperspherical dual \check{M} is defined, we have an explicit unramified Plancherel formula for X of the form (generalize the explicit Plancherel in the previous section)

$$\langle T_V \delta_0, \ T_W \delta_0 \rangle = \int_{\check{G}_{compact}} \chi_V \overline{\chi}_W \ (q - \text{character of } \check{M})$$

we have

$$RHS = \int \chi_V \overline{\chi}_W \left(\sum q^{-\frac{i}{2}} \chi_{\mathbb{C}[M]_i} \right)$$
$$= \sum q^{-\frac{i}{2}} \dim \operatorname{Hom}_{\check{G}}(W, V \otimes \mathbb{C}[\check{M}]_i)$$
$$= \operatorname{trace}(q^{-\frac{1}{2}} \text{ on } \operatorname{Hom}_{\check{G}}(W, V \otimes \mathbb{C}[\check{M}]_i))$$

we denote $\underline{W} = W \otimes \mathbb{C}[M]$, then the final trace can also be written as

$$\operatorname{race}(q^{-\frac{1}{2}} \text{ on } \operatorname{Hom}(\underline{W}, \underline{V}))$$

Now let's assume $F = \mathbb{F}_q((t))$, X_F/G_O is the \mathbb{F}_q -points of some "reasonable" algebraic variety/stack, we are going to geometrize the Hecke action on $C_c(X_F)^{G_O}$ to action of Hecke category on $Shv(X_F/G_O)$. Let's denote δ_0 the trace function $\mathbb{Q}_\ell|_{X(O)} = \underline{\delta}_0$. Now we can use the sheaf-function dictionary to rewrite

trace $(q^{-\frac{1}{2}} \text{ on } \operatorname{Hom}(\underline{W}, \underline{V}))$

as

 $\operatorname{tr}(\operatorname{Fr}^{-1}|\operatorname{Hom}(\underline{T}_W * \underline{\delta}_0, \underline{T}_V * \underline{\delta}_0)$

which is equal to

$$\int \chi_V \overline{\chi_W} \ (q - \text{character of } \check{M}) = \text{Hom}_{\check{M}/\check{G}}(\underline{W}, \underline{V})$$

The matching of boundary conditions predict that we have the following equivalence of categories: for $F = \mathbb{C}((t))$ (topological version) or $\overline{\mathbb{F}_q}((t))$ (arithmetic version)

$$Shv(X_F/G_{\mathcal{O}}) \longrightarrow QC(\dot{M}/\dot{G}) \circlearrowright \mathbb{G}_{gr}$$
$$\underline{\delta_0} \longmapsto \mathcal{O}_{\check{M}}$$

here $Shv(X_F/G_{\mathcal{O}})$ is the boundary condition produced by X, and the \mathbb{G}_{gr} action is introduced to get the correct q-character, it in fact corresponds to the evaluation point of the local L-function.

We can obtain the following corollary of the previous conjecture:

$$\operatorname{Hom}_{X(F)/G(\mathcal{O})}(\underline{\delta_0}, \underline{\delta_0}) = \operatorname{Hom}_{\check{M}/\check{G}}(\mathcal{O}, \mathcal{O})$$

over $\mathbb{C}((t))$, the left handside gives us $H^*_{G(\mathbb{C})}(X(\mathbb{C}))$, the $G(\mathbb{C})$ -equivariant cohomology.

Example 3.1. For $X = \mathbb{A}^1$, $G = GL_1$, we have $\check{G} = GL_1$ and $\check{M} = T^* \mathbb{A}^1$, the $G(\mathbb{C})$ -equivariant cohomology of $X(\mathbb{C})$ is $\mathbb{C}[[\xi]] = H^*(BS^1)$, and for $\check{G} = GL_1$, $\check{M} = T^* \mathbb{A}^1$, we have

$$\lambda \cdot (x, y) = (\lambda x, \frac{y}{\lambda})$$

hence $\mathbb{C}[\check{M}]^{\check{G}} = \mathbb{C}[xy].$

Example 3.2. $X = \mathbb{G}_m \setminus PGL_2$, $G(\mathbb{C})$ -equivariant cohomology of X is $\mathbb{C}[\xi_2]$. For the dual side, $\check{G} = SL_2$, $\check{M} = T^* \mathbb{A}^2 \cong \operatorname{Mat}_2$

$$\mathbb{C}[\check{M}]^G = \mathbb{C}[\operatorname{Mat}_2]^{SL_2} = \mathbb{C}[\det]$$