
BOREL-TITS THEORY

RUI CHEN

1. Introduction

This is my study note for the Borel-Tits theory following Brain Conrad’s course notes https://virtualmath1.
stanford.edu/~conrad/249BW16Page/, most proof will be omitted. My main motivation for learning this
theory is that in the paper [1], they unified the Borel-Tits theory and Luna’s theory of spherical systems.

2. Notation

In this note, I will fix k a characteristic zero field, G a connected reductive group over k, A a maximal
k-split torus of G, P a minimal k-parabolic subgroup containing A.

3. Root systems

Let G be a connected semisimple groups over a field k, let A be a maximal split k-torus, we can define a
set

Φk := Φ(G,A) = {non-trivial A-weights on g} ⊂ X∗(A)− {0}
since G is semisimple, we have Φk spans X∗(A)Q.

We have a bijection

(3.1) {minimal parabolic k-subgroups contain A} ↔ {positive systems of roots Φ+ ⊂ Φk}

given by P 7→ Φ(P,A).

Theorem 3.1. Let G be a connected reductive group over k and A ⊂ G a maximal split torus. The map
P 7→ ΦP,k := Φ(P,A) is an inclusion-preserving bijection:

(3.2) {parabolic k-subgroups contains A} ↔ {parabolic subsets of Φk}

Fixing P0 a minimal k-parabolic subgroup, Φ+
k := Φ(P0, A) is a positive system of roots for Φk, let

∆k ⊂ Φ+
k be the associated root basis, then we get an inclusion-preserving bijection

(3.3) {P0 ⊂ Q} ↔ {parabolic subsets Ψ ⊂ Φk containing Φ+
k }

Such Ψ are exactly the subsets Φ+
k ∪ |I| for I ⊂ ∆k where [I] := (ZI) ∩ Φk. Informally, this tells us

that standard parabolic subgroups are obtained from the minimal P0 by admitting negative restricted roots
supported in specific directions relative to restricted root basis attach to P0.

3.1. Link between absolute and restricted roots. Choose A a maximal split torus in G and a minimal
parabolic k-subgroup P contains A. Pick a maximal k-torus T contains A and a Borel subgroup Tk ⊂ B ⊂ Pk.
Inside the absolute root system Φ = Φ(Gk, Tk), we have a positive system of roots Φ+ = Φ(B, Tk). Let ∆
be a basis of Φ+, we are going to use ∆ to construct a basis of Φk = Φ(G,A) corresponding to its positive
system of roots Φ(P,A) := Φ+

k . Here note that we have chosen B inside Pk.
Since Ak ⊂ Tk, we have a surjective restriction map

X∗(Tk) −→ X∗(Ak)

sending Φ into Φk ∪ {0}, this carries Φ+ into Φ+
k as we have chosen B ⊂ Pk. Let ∆0 = {a ∈ ∆ : a|Ak

= 1}.
Let ∆k be the image of ∆−∆0 in Φk, so ∆k ⊂ Φ+

k since B ⊂ Pk.

Lemma 3.2. The parabolic subset Φ(Pk, Tk) ⊂ Φ coincides with Φ+ ∪ [∆0].
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Proof. Any parabolic subset containing Φ+ has the form Φ+ ∪ [I] for a unique subset I ⊂ ∆, Φ(Pk, Tk) is
such a subset since P is a parabolic and we have chosen B ⊂ Pk.

I is the set of a ∈ ∆ such that −a ∈ Φ(Pk, Tk). Since P = ZG(A) ⋉ U with Uk ⊂ Ru(B), since −∆ is
disjoint from Φ+, I is the set of a ∈ ∆ such that

−a ∈ Φ(ZG(A)k, Tk) = {b ∈ Φ : b|Ak
= 1}}

which is to say a ∈ ∆0. □

Remark 3.3. We can use a refinement of the previous argument to show that ∆0 is a basis of the root system
Ψ = Φ(ZG(A)k, Tk).

Proposition 3.4. The set ∆k defined above is the basis of Φ+
k .

Proof. We may assume that G is semisimple. Since Φ ⊂ Z≥0∆ ∪ Z≤0∆, applying the restriction we get

(3.4) Φk ⊂ Z≥0(∆k) ∪ Z≤0(∆k)

since we assume that G is semisimple, so we have Φk spans X∗(A)Q and hence ∆k spans X∗(A)Q.
It follows from (3.4) and the inclusion ∆k ⊂ Φ+

k that ∆k is a basis if it is linearly independent. Thus if

we can prove #∆k ≤ dimA, then we will be done. This will be proved using the ∗-action of Γ = Gal(k/k)
on the basis of Φ(B, Tk) = Φ+ ⊂ Φ 3.5. □

3.2. Galois ∗-action. We recall that there is a ∗-action of Γ = Gal(k/k) on ∆: for γ ∈ Γ, there exists a
unique ωγ ∈ W (Φ) = NG(T )(k)/T (k) such that ωγ(γ(Φ

+)) = Φ+ and ωγ(γ(∆)) = ∆. In general, ωγ does
not arise from NG(T )(k), and ωγ must be nontrivial in the non-quasisplit case.

The ∗-action satisfies the following two properties:

(1) The restriction map Res : ∆ → ∆k ∪{0} is Γ-invariant, so in particular of the fibers are Γ-stable.
(2) For a parabolic subgroup Q with B ⊂ Pk ⊂ Q corresponds to a unique subset of ∆ containing
∆0, and by lemma 3.2, this subset has the form ∆0⊔∆′ for some ∆′ ⊂ ∆−∆0, we have the property
that Q is defined over k if and only if ∆0 ⊔∆′ ⊂ ∆ is Γ-stable or equivalently ∆′ is Γ-stable.

Proposition 3.5. Let G be a connected semisimple reductive group and A a maximal split torus, P a
minimal parabolic k-subgroup contains A, and for T a k-maximal torus contains A, and a Borel subgroup
Tk ⊂ B ⊂ Pk, ∆ a basis of Φ+ = Φ(B, Tk) and ∆k = Res′∆, then we have dim A ≥ #∆k.

Proof. Since dim A is the size of a basis of a restricted root system, by the correspondence between parabolic
subgroups and the subsets of ∆k, we have

2dim A ≥ #{P ⊂ Q over k }
There is another way to describe the right hand side: it is the number of the Γ-stable subsets of ∆ − ∆0.
But a Γ-stable subset is exactly a union of Γ-orbits, so the number of Γ-stable sets is 2#{Γ−orbits}.

Now by (1) the number of Γ-orbits is at least the number of fibers of the Γ-invariant surjection ∆−∆0 →
∆k, and the number of such fibers is #∆k, and we conclude that

2dimA ≥ #{P ⊂ Q over k } = 2#{Γ−orbits} ≥ 2#∆k

so we get the inequality dim A ≥ #∆k. □

Corollary 3.6. The fibers of ∆−∆0 → ∆k are the Γ-orbits away from ∆0.

4. Weyl group

Let G be a connected reductive group over a field k, A a maximal k-split torus in G, and P a minimal
parabolic k-subgroup of G, let N = NG(A) and Z = ZG(A), so N/Z is a finite étale k-group. The group
N(k)/Z(k) is called the restricted Weyl group and we will denote it by Wk, we will show that it will be
naturally identified with the combinatorial Weyl group W (G,A) attached to the root system (G,A).

We want to study the relationship between N(k)/Z(k) and N/Z, the first thing to notice is that

Lemma 4.1. The finite étale k-group N/Z is constant. Equivalently the natural Gal(k/k)-action on (N/Z)(k) =
N(k)/Z(k) is trivial.
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Since the cosets of Zk inside Nk are the connected components of Nk, the triviality of the Galois action
in the previous lemma implies that each components is defined over k. In other words, the connected
components of N are geometrically connected over k. What is more subtle is that each of these components
contain a k-point.

Proposition 4.2. The natural map N(k)/Z(k) → (N/Z)(k) is surjective.

Let W denote the constant finite k-scheme N/Z, the idea for proving the surjectivity is to show that W (k)
acts freely on a set whose N(k)/Z(k)-action is transitive. In the split case, there is a bijective correspondence
between the set of Borel subgroups containing a given maximal torus and the set of Weyl chambers in the
associated root system and there is a simply transitive action of the combinatorial Weyl group on the set of
chambers, and there is also a transitive action of the Weyl group defined via the group data. In the general
setting, we are led to consider the set P of minimal parabolic subgroups P of G that contain the maximal
k-split torus A, there is a transitive N(k)/Z(k) action on P as P, P ′ in P are G(k)-conjugate, there is also
a free W (k)-action on P descend from k.

Theorem 4.3. The natural inclusion W (Φk) = W (Φ(G,A)) ⊂ W (G,A) is an equality.

Proof. The simply transitive property of W (Φk) on the positive system of roots ⊂ Φk is a general fact
from the theory of root system as we have shown that ∆k is the basis of Φ+

k 4.2. The group W (G,A) acts
simply transitively on the set P of minimal parabolic k-subgroups, and this follows from the relative Bruhat
decomposition. By (3.1), there is a bijection between the set of positive system of roots and the minimal
parabolic subgroups contain A, so we have W (Φk) and W (G,A) act simply transitively on the same set P,
and hence they are equal. □

When G is quasisplit, i.e. the minimal parabolic k-subgroups are Borel subgroups, there is a refinement of
the proposition 4.2 as follows: Let A be a maximal k-split torus in G and B a minimal parabolic k-subgroup
containing A, so ZG(A) is a Levi subgroup of B, so it must be a k-maximal torus T . Any g ∈ NG(A)(k)
normalizes T , so we have NG(A)(k) ⊂ NG(T )(k), and this is an equality as any g ∈ G(k) that normalizes T
must also normalize the unique maximal k-split torus A in T . So by proposition 4.2, we have the inclusion
of groups

W (Φ(G,A)) = W (G,A)(k) = NG(A)/ZG(A)(k) = NG(T )(k)/T (k) ⊂ (NG(T )/T )(k) = W (G,T )(k)

Proposition 4.4. Let G be a quasisplit connected reductive group over a field k, for a maximal split k-
torus A and the associated maximal k-torus T = ZG(A). Let Wk = NG(A)(k)/ZG(A)(k) = W (G,A) be the
restricted Weyl group and W = NG(T )/T the absolute Weyl group, then the natural inclusion Wk ↪→ W (k)
defined above is an equality.

The equality Wk = W (k) is clear when H1(k, T ) = 1, and this is the case when T is an induced torus.
This is the case if the group G is semisimple of simple-connected or adjoint type. We can reduce the general
quasisplit group case to the adjoint case as the restricted root system and the absolute root system are not
changed under the the formation of central quotient.

5. Tits system

We say a k-semisimple group G k-isotropic if it contains Gm as a k-subgroup.

Theorem 5.1. (Borel-Tits) Let G be a k-isotropic group, then all the maximal k-split torus A in G are
G(k)-conjugate, the set Φ(G,A) of nontrivial A-weights on Lie(G) is a root system in X∗(A)Q and the
minimal parabolic k-subgroups P in G are G(k)-conjugate.

Every P contains some A, and every A lies in some P , the assignment P 7→ Φ(P,A) is a bijection from
the set of minimal parabolic k-subgroups P contains A onto the set of positive systems of roots in Φ(G,A).

The étale k-group W (G,A) := NG(A)/ZG(A) is constant, and NG(A)(k)/ZG(A)(k) → W (G,A)(k) is an
isomorphism, and naturally W (G,A)(k) = W (Φ(G,A)).

The common dimension of maximal k-split tori in G is called the k-rank. The isomorphism

NG(A)/ZG(A)(k) ∼= W (G,A)(k)
3



is quite remarkable as in general H1(k, ZG(A)) ̸= 1, so it doesn’t follow directly from the cohomological
argument.

A big challenge in proving these results is that we cannot use extension of the ground field easily as in
the split case.

Definition 5.2. A Tits system is a 4-tuple (G , B,N,Σ) where G is an abstract group, B and N are
subgroups, and Σ ⊆ N/(B ∩N) is a subset such that the following axioms are satisifed:

(T1) B ∪N generates G and B ∩N is normal in N .
(T2) the elements of Σ have order 2 in the quotient W := N/(B ∩N) and generate W .
(T3) for all σ ∈ Σ and ω ∈ W , σBω ⊆ BωB ∪BσωB (using any representatives for σ and ω in N).
(T4) σBσ ⊈ B for all σ ∈ Σ.

Let’s remark that Σ is uniquely determined by (G , B,N).

Theorem 5.3. (Borel-Tits) Let N = NG(A) and Z = ZG(A), and P a minimal k-parabolic subgroup of G
containing A. Let ∆k be the basis of the positive system of roots Φ+

k = Φ(P,A), and let R = {ra| a ∈ ∆k}
be the associated set of simple positive reflections. The 4-tuple (G(k), P (k), N(k), R) is a Tits system with
Weyl group Wk = N(k)/Z(k).

This is the standard Tits system associated to (G,A, P ), since P (k)∩N(k) = Z(k), we have N(k)/(P (k)∩
N(k)) =: Wk = W (Φk), that is the Weyl group of the standard Tits system coincides with W (G,S).

The axiom (T1) follows from the relative Bruhat decomposition G(k) = ⊔ω∈Wk
P (k)nωP (k). The quotient

group N(k)/Z(k) = Wk is generated by R, and this is the axiom (T2).
To prove (T4), it suffices to prove that rP (k)r ̸= P (k) for r = ra ∈ R with a ∈ ∆k. Since rPr contains

rUar = Ur(a) = U−a, it suffices to prove U−a(k) is not contained in P (k). Since for any closed smooth
connected k-subgroup H of G, we have U−a ∩ H is also smooth connected, so U−a ∩ P is smooth and
connected, but its Lie algebra is trivial, so U−a ∩ P = 1, and hence U−a(k) ∩ P (k) = 1, which imply that
rP (k)r ̸= P (k) as U−a(k) ̸= 1 as the smooth connected k-group U−a is nontrivial and k-split.

Axiom (T3) follows from the following inclusion: for a ∈ ∆k and ω ∈ Wk, we have:

rP (k){ω, rω}P (k) ⊆ P (k){ω, rω}P (k)
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