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1. Introduction

This is my study note for the various result on automorphism groups of spherical varieties, they are related
to different subsets of spherical roots.

2. Notation

For the purpose of future application to non algebraically closed field, we will keep the notation compatible
with [KK16], for the application to harmonic analysis, we change some notations to be compatible with
[SV17].

We will let k be a characteristic zero field, and G a connected reductive group over k.
X a spherical variety for G, and we introduce the following invariants for X: AX the maximal torus of

X which is a quotient of A, χ(X) the characters of B-semiinvariant functions on X.

3. Result of Knop

In this section, we will assume k is algebraically closed, we will summarize the main result of the paper
[Kno96]. We will denote Λ(X) = χ(X)∗, the cocharacter lattice of X, aX = Λ(X) ⊗ Q. An B-invariant
Q-valued valuation on k(X) which is trivial on k× will induce an element of Λ(X) via restriction to k(X)(B),
here we use the identification χ(X) ∼= X∗(AX). We will denote V ⊂ aX the cone generated by the images
of G-invariant valuations, V contains the image of negative Weyl chamber under the natural map a → aX .

The cone V is the fundamental domain for a finite reflection group WX ⊂ End(aX). We also consider the
cone dual to V

V ⊥ = {χ⊗ χ(X)⊗ R| ⟨χ, v⟩ ≤ 0 for every v ∈ V }
The generators of the intersections of its external rays with χ(X) is spherical roots of X, which we denote
by ΣX .

Remark 3.1. This is the so called primitive spherical roots in the literature.

Remark 3.2. We will see later that a set of roots ΣnX related to ΣX , are simple roots of a based root system
with Weyl group WX , this root system is the spherical root system of X.

We will introduce the following types of spherical roots, they will play an important role in the calculation
of various automorphism groups and in fact also in the proof of 4.4.

Definition 3.3. We define the following for types of spherical roots, Σ1
X ,Σ

2
X ,Σ

3
X ,Σ

4
X

(1) γ ∈ ΣG and there exists D ∈ D with ρ(D) = 1
2α

∨|aX
.
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(2) there is a subset Σ ⊂ ΣG of type Bn, n ≥ 2 such that

γ = α1 + α2 + · · ·αn
and αi ∈ ΣpX for i > 1.
(3) there is a subset {α1, α2} ⊂ ΣG of type G2 with α1 short root and γ = 2α1 + α2.
(4) γ ∈ X∗(AX) but γ /∈ ZΦ.

3.1. Group schemes. In this section, we will recall Knop’s theory on the construction of the root system
using the geometry of the moment map and integration of the Lie algebra action. k will be an algebraically
closed field of characteristic zero, G will be a connected reductive group over k and B the Borel subgroup of
G, T a maximal torus of B.

Let S′ → S be a morphism of varieties, Z ′/S′ is an S′-scheme, we will denote the Weil restriction of Z ′

along φ as ResS′/SZ
′, when Z ′/S′ is an S′-group scheme, we can show

∏
S′/S Z

′ is an S-group scheme.

Example 3.4. Let ℓ/k be a field extension, when φ : Spec(ℓ) → Spec(k) is induced by field inclusion, and
Gℓ is an algebraic group scheme over ℓ, then the restriction of scalar coincide with the usual restriction of
scalars for algebraic groups, Resℓ/kGℓ is an algebraic group scheme over k.

We now apply the restriction of scalar operation to the following situation: Let S′ be an affine space and
W a finite group acting linearly on S′, we assume W is generated by reflections. Then S = S′/W is also an
affine space and S′/S is finite and flat. Assume W also acts on a finitely generated free abelian group Γ, let
A be the algebraic torus with character lattice Γ, then we know that

Z :=
∏
S′/S

(A× S′)

exists and is a smooth, commutative S-group scheme.
Let X/S be an S-scheme, W acts on MorS(X,Z) and hence on the S-group scheme Z, we define

A = A(W,S′,Γ) := ZW

as the set of fixed points of W -action.

Lemma 3.5. A/S is a smooth commutative affine group scheme.

Next we investigate the fibers As := π−1(s) ⊆ A, it is an affine commutative group, it decomposes into
unipotent and semisimple part As = Au

s ×As
s.

Lemma 3.6. Let s ∈ S, then for every s′ ∈ S′ there is a homomorphism ιs′ : As → A with kernel Au
s and

image AWs′ ∼= As
s.

Lemma 3.7. The set of global sections of A/S equals to AW , and σ(s) ∈ As is semisimple for every s ∈ S.

We will then describe the Lie algebra of A, it is a locally free sheaf on S. As S is affine, we only need to
consider LieA of global sections, let a = Hom(Γ, k) be the Lie algebra of A

Lemma 3.8. There is a canonical isomorphism LieA = MorW (S′,LieA) = (k[S′]⊗k a)W .

Next we assume that we have an W -isomorphism S′ ⊗Z k, we may identify S′ with a∗, and we can define
the module of Kahler differentials

(3.1) Ω(S′) = k[S′]⊗k a = LieS′(A× S′)

Theorem 3.9. Assume S′ = Γ⊗Z k, then the equality (3.1) induces an isomorphism Ω(S) = LieA.

Example 3.10. Let X be a smooth G-variety, then the little Weyl group WX acts on a∗ and also on χ(X),
so we can form AX .

We introduce the notion of minimal root system attached to a pair (W,Γ)

Definition 3.11. The minimal root system Λ = Λ(W,Γ) ⊂ Γ is the set of generators of Rw := {γ ∈ Γ∥ ωγ =
−γ} where ω ∈W runs through all reflections.

It can verified that Φ = ZΛ is indeed a root system and whose Weyl group is W .
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3.2. Integration of Lie algebra actions. Let S be an affine variety, A → S a smooth group scheme with
connected fibers, and LA = Lie A the Lie algebra of A/S considered as a k[S]-module, we assume for every
s ∈ S and α ∈ A0

s, there is a rational section a : S → A0 with a(s) = α. We will assume A is a group scheme
defined by restriction of scalars from previous section.

Let X → S be an S-variety equipped with a Lie algebra homomorphism of LA into the Lie algebra of
global vector fields T (X/S), any group action µ : A×S X → X will induce a homomorphism like this.

We can define some universal S-scheme on which A acts: let X be the set of all local rings P ⊂ k(X)
satisfying the properties

• The field of fractions of P is k(X).
• P is the localization of a finitely generated subalgebra of a prime ideal.
• k[S] ⊆ P.

then X is a S-scheme. We define X0 ⊂ X to be the subset of those local algebras which are LA-stable. X0 is
an open scheme and there is an action of LA on X0

Theorem 3.12. There is a unique morphism µ : A×S X0 → X0 which is a group scheme action and which
induces the action of LA.

3.3. Automorphisms and root system. Let X be a smooth variety with G-action, consider the cotangent
bundle π : T ∗X → X, and the G-action induces the moment map

Φ : T ∗X −→ g∗ : α 7→ lα

where lα(ξ) = α(ξπ(α)). T ∗X carries a symplectic structure ω, and each function f on T ∗X induces a
Hamiltonian vector field Hf , this defines a Poisson product {f, g} = ω(Hf , Hg). The moment map induces
Φ∗ : k[g∗] → k[T ∗X], and this is a Poisson morphism, we denote its image by R0.

The Poisson center of R0 is the algebra RG0 of invariants. Let t ⊂ g be a Cartan subalgebra, by the
Chevalley restriction theorem, we have an isomorphism k[g∗]G ∼= k[t∗]W = k[t∗/W ], for W the Weyl group
of G. We get a morphism Ψ : T ∗X → t∗/W , and RG0 is the image of Ψ∗.

Definition 3.13. The elements of R0 are called collective Hamiltonians and RG0 the invariant collective
Hamiltonians.

The problem that Knop wanted to solve is roughly whether there is a commutative algebraic group action
on T ∗X which integrates the Hamiltonian vector fields for RG0 . More precisely, for s ∈ t∗/W , f ∈ k[t∗/W ]
and f0 = f ◦ Ψ ∈ RG0 , then Hf0 is parallel to the fiber T ∗

s = Ψ−1(s), we get a Lie algebra homomorphism
Ωs(t

∗/W ) → T (T ∗
s ) and the problem is whether there is a group As integrating the Lie algebra action.

Actually we want to integrate an algebra which is a bit larger than RG0 , we let R be the integral closure
of R0 inside k[T ∗X]. With LX := Spec RG, we get a morphism T ∗X → LX .

Theorem 3.14. Let X be a smooth G-variety, then there is a finite reflection group WX acting on the vector
space a∗X and a WX-stable lattice χ(X) ⊆ a∗X such that for the group scheme A0

X = A(WX , a
∗
X , χ(X))0 the

following holds

• There is an identification a∗X/WX = LX .
• There is an action of A0

X on T ∗X over LX .
• There is a commutative diagram

Ω(LX)
Ψ∗
//

1∼=
��

Ω(T ∗X)

2∼=
��

Lie A0
X

// T (T ∗X)

where the arrow 1 is the homomorphism from theorem 4.4, the arrow is the identification via the symplectic
structure of T ∗X and the bottom arrow is induced by the A0

X-action.

For f ∈ k(X)(B), let χf ∈ χ(B) be its character, we will define χ(X) as the image of k(X)(B) in χ(B).
Let AX be the torus with character lattice χ(X), and a∗X = χ(X) ⊗ k, the projection T → AX induces
a∗X ↪→ t∗, the main result of [Kno90] shows that there is a finite reflection group WX acting on a∗X and a
canonical isomorphism a∗X/WX

∼= LX .
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The proof is reduced to the homogeneous case, and then the theory from [Kno94] is used.
Let X be a normal variety, then we can apply the previous theory to study the group of central automor-

phisms of X
U(X) = {φ ∈ AutG(X) | φ(f) ∈ k∗f for all f ∈ k(X)(B)}

when X is spherical, this is the full automorphism group. Let D ∈ D be a color, it will be called underter-
mined if there is a different color D′ such that the restrictions of valuations vD, vD′ to k(X)B coincide.

Example 3.15. X = SL2/T , for T the maximal torus, there are two undetermined colors, we have U(X) ∼=
Z/2Z and it interchanges the two undetermined colors.

Let X be a normal G-variety, there is an open G-stable subset X0 of X such that U(X0) = U(X1) for
every open G-stable subset X1 of X0. We will denote this group by UX .

Theorem 3.16. Let X be a G-variety, then there is a unique homomorphism

λ : UX → AX φ 7→ λφ

such that φ(f) = λφ(χf )f for all f ∈ k(X)(B). This homomorphism is injective and if X is normal its
image is closed.

Knop showed further that U(X) belongs to the center of AutG(X) and if X is normal, then UX contains
U(X) as a closed subgroup of finite index.

We will now assume that U(X) = UX , and let a1X ⊆ a∗X be the points with trivial WX -isotropy group.
We have the following commutative diagram

UX
⊆
//

��

AutG(X)

��

AX // Aut(T ∗X ×LX
a1X)

there is an action of UX on both T ∗X and T ∗X×LX
a1X , this implies that the element a ∈ AX isWX -invariant.

Definition 3.17. We define the root lattice ΛX of X to be the kernel of χ(AX) → χ(UX) and the root
system ΦX of X to be the minimal root system attached to (ΛX ,WX) as in definition 3.11.

From the definition we have X∗(UX) ∼= X∗(AX)/ΛX . For X quasi-affine, there is an easier construction
of ΦX .

Definition 3.18. We define the spherical weights of X to be

χ+ = {λ ∈ X∗(A)+ : V (λ)
Hk

k
̸= 0 }

Let k[X] = ⊕λ∈χ+V (λ) be the isotypic decomposition of k[X], and we define

Λ+
X := Z>0{λ+ µ− ν : V (ν) ⊂ V (λ) · V (µ) }

Lemma 3.19. Let X be quasi-affine, then we have

• Λ+
X is a free monoid, we denote ΣnX its set of free generators.

• ΛX = ZΛ+
X .

• V = {v ∈ Hom(χ(X),Q)| v(Λ+
X) ≥ 0 }.

The second property also implies that U(X) = UX for X quasi-affine. Here let’s note that ΣX and ΣnX is
different in general, e.g. for X a wonderful variety, we have χ(X) = ⟨ΣX⟩. The precise relation between ΣX
and ΣnX is given by theorem 4.4.

When X is a symmetric variety, ΦX is closely related to the classical restricted root system associated to
symmetric varieties. So we assume that X is a symmetric variety and X = G/H where G is semisimple and
H is the fixed point of an involution θ. Let T be a θ-stable maximal torus and a ⊆ t the (−1)-eigenspace
of θ and ρ : t∗ → a∗ the restriction map, then ΦrX := ρ(∆)\{0} is the restricted root system for X and it
is well-known that ΦrX is indeed a root system though it might be non-reduced, that is it contains α ∈ ∆G

also contains α/2.
It can be shown that the root system ΦX is compatible with the classical construction
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Theorem 3.20. Let X be a symmetric variety, then ΦX is the reduced root system associated to 2ΦrX .

Proof. There is a Borel subgroup B contains T and such that BH is dense in G, this implies AX ∼= T/T ∩H,
from T ∩H = T θ, we get χ(X) = (1− θ)χ(T ). We may assume G is of adjoint type, then χ(T ) is generated
by ∆, as 1

2 (1− θ) is the projection to a∗, we conclude χ(X) is the root lattice of 2ΦrX . Also χ(X) is the root
lattice of ΣX as NG(H) = H, furthermore, it is known that ΦX and ΦrX have the same Weyl group, so we
conclude ΦX is the reduced root system of 2ΦrX . □

Example 3.21. The restricted root system of the symmetric variety GL2n/S(GLn × GLn) is of type Cn,
the spherical root system is of type Bn as the reduced root system associated with 2Cn root system.

The restricted root system of the symmetric variety GLn/S(GLm×GLn−m) is of type BCm, the spherical
root system is of type Bm.

Definition 3.22. We define U#
X ⊂ UX to be the subgroup of automorphisms that stabilize every B-stable

divisor of X.

Theorem 3.23. Let X be a normal G-variety, then there is a root system Φ#
X ⊆ χ(X) with simple roots

Σ#
X such that U#

X = ∩α∈Σ#
X
kerAX

α.

Furthermore, we can show that ( this is essentially the fact that every spherical roots of type (1) is
doubled)

Corollary 3.24. Assume X is a G-spherical variety, then we have

1 −→ U#
X −→ UX −→ AutΩ(D) −→ 1

and U#
X

∼= X∗(AX)/⟨Σ#
X⟩, UX = X∗(AX)/ΛX = X∗(AX)/⟨ΣnX⟩.

4. Result of Losev

In this section, we will assume k is algebraically closed, and we will summarize the main result of [Los09].
Losev clarifies the distinction between ΣX and ΣnX , and he introduced the notion of distinguished spherical

roots.

Definition 4.1. Following Losev, we will call roots of type (1), (2), (3) the set of distinguished roots.

We introduce the following families of spherical subgroups related to the spherical subgroup H, whose
combinatorial invariants can be recovered from those of H.

Definition 4.2. We define HH to be the set of all algebraic subgroups H̃ of G such that H ⊂ H̃ and H̃/H
is connected.

We also defineHH = {H̃ ∈ H|Ru(H) ⊂ Ru(H̃), H̃/Ru(H̃) = H/Ru(H), Ru(h̃)/Ru(h) is an irreducible H-module}.

we note that HH can be described in terms of the so called colored subspace.
Given X1, X2 two spherical varieties, we write D(X1) = D(X2) if there is a bijection ψ : D(X1) → D(X2),

such that GD = Gψ(D), ρ(D) = ρ(ψ(D)), here GD = {g ∈ D | gD = D}.

Theorem 4.3. Let H1, H2 be two spherical subgroups, X1 = G/H1, X2 = G/H2, if χ(X1) = χ(X2), VX1 =
VX2

,D(X1) = D(X2), then H1, H2 are G-conjugate.

The following theorem studies the relation between ΣX and ΣnX .

Theorem 4.4. Assume X is an affine spherical variety, then ΣnX is obtained from ΣX by replacing spherical
roots α of type (1), (2), (3), (4) by 2α.

Furthermore, it can be shown that any bijection ψ : D(X1) → D(X2) is induced by some element of UX .
We have the following functorial properties between distinguished roots

Lemma 4.5. Let X1, X2 be two spherical G-varieties and let φ : X1 → X2 be a dominant G-equivariant
morphism, then ΣiX1

∩ ΣX2 ⊆ ΣiX2
for i = 1, 2, 3. If φ is generically etale, then we have the equalities hold.

The distinguished roots also behave well under parabolic induction
5



Proposition 4.6. Let X be a spherical G-variety of the form G×H V , where H is a reductive subgroup of
G and V is an H-module, then ΣiX ⊂ ΣiG/H for i = 1, 2.

Recall that UX is the image of AutG(X) inside AX .

Definition 4.7. We say that φ ∈ UX doubles α ∈ ΣdistX if ⟨α,φ⟩ = −1. The set of all φ ∈ UX doubling α is
denoted by UX(α).

Lemma 4.8. Theorem 4.4 is equivalent to the statement

(∗) UX(α) ̸= ∅ for any α ∈ ΣdistX

Proof. We may assume X = G/H, since ΣX = ΣG/NG(H), theorem 4.4 implies the statement.

From the table of Wasserman, it is known that ΣX = Σ1 ⊔ 2Σ2, for some partition of ΣX = Σ1 ⊔ Σ2

with ΣX ∩ ΛG\ΣdistX ⊂ Σ1, if (4.1) holds, then ΣdistX ⊂ Σ2, since the image of Z(G) in Aut(X) belongs to

AutG(X), we have ΣX\ΛG ⊂ Σ2. □

The following shows that the property (∗) behaves well under the quotient map G/H◦ → G/H.

Lemma 4.9. We have the following assertions

• Let α ∈ ΣdistX , then UG/H◦(α) ̸= ∅ is equivalent to UG/H(α) ̸= ∅.
• (∗) holds for G/H whenever it holds for G/NG(H).

Lemma 4.10. Let X be an arbitrary smooth spherical G-variety, then there is an epimorphism Pic(X) →
ZΣ1

X .

This lemma, in the setting NG(H) acts on z(h) without nonzero vectors will imply that #Pic(G/NG(H)) <
∞, hence Σ1

G/NG(H) = ∅.
The proof of the following lemma can be reduced to the G2/SL3 case.

Lemma 4.11. Let X = G/H and let α ∈ Σ3
X , then UX(α) ̸= ∅.

We can now sketch a proof of theorem 4.4 in the case of smooth affine spherical varieties.
The assertion (1) proves theorem 4.4 for some spherical affine homogeneous spaces and the assertion (2)

is an auxiliary result in the proof of theorem 4.3.

Proposition 4.12. Let H be a reductive subgroup of G such that NG(H) is not contained in a proper
parabolic subgroup of G, then

(1) the condition (∗) holds for X = G/H.
(2) g2 ∈ NG(H)◦Z(G) for any g ∈ NG(H).

For the proof of (1), we may assume NG(H)◦ = H by 4.9, and the reductive spherical subgroups H ⊂ G
with NG(H)◦ = H are classified in [Bri87] and [Mik87]. Concerning the first type of the distinguished
spherical roots, we have Σ1

G/NG(H) = ∅ from the discussion after 4.10, and hence UX(α) ̸= ∅ for any α ∈ Σ1
X .

For the distinguished spherical root of type 3, (1) is proved in 4.9.
For the proof of (2), the symmetric variety case can be checked directly by hand, and in the case when

G/H is not symmetric, if G is not simple, we have NG(H) = H, if G is simple, there are only finitely many
such pairs, one can check case by case that NG(H)/H ∼= Z2 or 1, hence g2 ∈ NG(H)◦Z(G) holds.

We now sketch the proof for theorem 4.4: using the previous result 4.9, we may reduce to the case
H = NG(H) and from 4.12, we may assume H is contained in a proper parabolic. Now we want to show
that there are no distinguished spherical roots. This follows from the following propositions: if there is a

distinguished root α ∈ ΣG/H , then we show that there exists H̃ ∈ HH with α ∈ ΣG/H̃ , but the existence of

such H̃ contradicts the inductive assumption.

Proposition 4.13. Let α ∈ ΣiX for i = 1, 2, suppose H is contained in some proper parabolic subgroup of

G, then we have α ∈ ΣG/H̃ , for some H̃ ∈ HH .

Proposition 4.14. Let α ∈ ΣiX for i = 1, 2, then there is no H̃ ∈ HH such that α ∈ ΣG/H̃ .
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5. Calculation of the automorphism group

In this section, we let X = G/H be a spherical variety over a field k of characteristic 0, G a quasisplit
connected reductive group over k. Then there is a k-structure on AX = NG(H)/H induced from AX ↪→ AX ,
and AX has a k-torus structure. We use the previous result of Knop and Losev to give a combinatorial
description of the automorphism group AX := AutG(G/H), for a ∈ AX and λ ∈ χ, the G-equivariant
automorphism a preserves the one-dimensional subspace k(G/H)Bλ , it acts on this space by a scalar da,λ ∈ k×.
We obtain a homomorphism in this way

ι : AX → Hom(χ, k×), a 7→ (λ 7→ da,λ)

Knop proved that the homomorphism ι is injective and its image is closed in AX(k), so its image corresponds
to a lattice ΛX ⊂ χ, so A is the group of k-points of a group A of multiplicative type over k.

We let Σ#
X ⊂ ΣX be the subset of spherical roots obtained from ΣX by replacing γ with 2γ for γ ∈

Σ2
X ,Σ

3
X ,Σ

4
X . Recall that ΣnX is obtained from ΣX by replacing γ with 2γ for all γ ∈ ΣiX , i = 1, 2, 3, 4. Let’s

note that ΣnX is obtained from Σ#
X by doubling α for α ∈ Σ1

X by definition.

Proposition 5.1. We have A = ⟨ΣnX⟩⊥, and hence X∗(A) = χ/⟨ΣnX⟩.

This is exactly the content of theorem 4.4.
From 5.1, we have

A(k) = Hom(χ/⟨ΣnX⟩, k×)
let γ ∈ Σ1

X ⊂ χ, then γ /∈ ⟨ΣN ⟩, but 2γ ∈ ΣnX , we have [γ] as an element of χ/⟨ΣnX⟩ of order 2, and it defines
a homomorphism

A(k) = Hom(χ/⟨ΣnX⟩, k×) → Hom(⟨γ⟩/⟨2γ⟩, k×) = {±1}, a 7→ a(γ)

for a(fγ) = a(γ)fγ with fγ ∈ k(X)Bγ .

Proposition 5.2. For γ ∈ Σ1
X , an automorphism a ∈ A(k) = AutG(G/H) swaps D+

γ and D−
γ if and only

if a(γ) = −1.

the proof of this proposition is contained in Losev’s remark of the paper [Los09] after his definition of
UX(α).

AX is the k-points of A = NG(H)/H, since A acts on D , we have a homomorphism A → Aut(D), from
Losev’s result UX(α) ∈ α, we see this homomorphism is surjective and hence we have the exact sequence

1 −→ A#
X −→ AX −→ Aut(D) −→ 1

A#
X is the group of k-points of an algebraic subgroup A# of A, and A# = H/H ⊂ NG(H)/H = A, here H

is the spherical closure of H.

Proposition 5.3. We have A# = ⟨Σ#
X⟩⊥, and X∗(A#) = χ/⟨Σ#

X⟩.

Proof. By proposition 5.2, we have A = ⟨ΣnX⟩⊥, and from the definition, a ∈ A(k) = AutG(G/H) is contained
in A#(k) if and only if a fixes D+

γ and D−
γ for all γ ∈ Σ1

X , hence from proposition 5.2, this holds if and only

if a(γ) = 1 for all γ ∈ Σ(2), since ⟨ΣnX⟩+ ⟨Σ1
X⟩ = ⟨Σ#

X⟩, so we conclude A# = ⟨Σ#
X⟩⊥. □

The group A here corresponds to the UX and A# corresponds to U#
X in Knop’s paper.

Example 5.4. We will denote α the simple root of PGL2 under the upper triangular Borel subgroup.
For the spherical variety X = PGL2/T , with T the maximal torus, there are two colors D1, D2 with same

valuation. We have T is a spherically closed subgroup, as we have A#
X = 1, and AX

∼= Z/2Z, the nontrivial
elements permute the two colors D1, D2.

Now we calculate AX using propositions 5.2 and 5.3. X is a wonderful variety, so χ = ΣX = Zα. ΣnX is
obtained from ΣX by doubling α, so ZΣnX = 2Zα, hence AX

∼= χ/ZΣnX ∼= Zα/2Zα = Z/2Z, ΣscX is obtained
from doubling spherical roots of type (2), (3), (4), and there is no spherical roots of type (2), (3), (4), so

Σ#
X = ΣX , hence A#

X = 1.

Above all, we see that T is a wonderful, spherically closed subgroup of PGL2 (as A#
X = 1), and it is not

self-normalizing ( as AX ̸= 1).
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