AN AFL FOR THE WHOLE HECKE ALGEBRA

RUI CHEN

Contents

1.	Introduction	1
2.	FL and AFL	1
3.	AFL for the whole Hecke algebra	2

1. Introduction

A note taken by me on 03/13/2023 for Rapoport's talk "An AFL for the whole Hecke algebra" at MSRI.

For $p \neq 2$, F/F_0 unramify quadratic extension, $n \geq 1$.

Fundamental lemma of Jacquet-Rallis: for W_0 a hermitian F/F_0 -space, dim= n+1. $W_0^b = \langle u \rangle^{\perp}$, $||u_0|| = 1$. $G_{W_0} = U(W_0^b) \times U(W_0)$ algebraic action by $U(W_0^b) \times U(W_0^b)$. $G' = GL_n(F) \times GL_{n+1}(F)$.

<u>Fundamental lemma:</u> For matching elements (g, γ) , we have

$$\mathcal{O}_g(1_{K^b \times K}) = \omega(\gamma)\mathcal{O}_\gamma(1_{K'_n \times K'_{n+1}})$$

- $\omega(\gamma)$: transfer factor.
- \mathcal{O}_{γ} : weighted orbital integral.

Long history: Jacquet-Rallis, Wei Zhang, Zhiwei Yun, Beuzart-Plessis.

There is a recent extension by Spencer-Leslie:

$$\mathcal{O}_q(\varphi) = \omega(\gamma)\mathcal{O}_{\gamma}(\varphi')$$

where $\varphi = \text{image of } \varphi' \in BC : \mathscr{H}_{K'_n \times K'_{n+1}} \to \mathscr{H}_{K^b \times K}.$

The proof of the fundamental lemma reduces the equality to the unit element, the generalization of Spencer goes other way around.

Replace split W_0 by non-split W_1 , then $W_1^b = \langle u_1 \rangle^{\perp}, ||u_1|| = 1$. $G_{W_1} = U(W_1^b) \times U(W_1)$.

Arithmetic fundamental lemma: For matching elements (g, γ)

$$2\cdot \langle g\Delta, \Delta\rangle_{\mathcal{N}_{n,n+1}} log q = -\omega(\gamma)\cdot \partial \mathcal{O}_{\gamma}(1_{K'_n\times 1'_{K_{n+1}}})$$

here \mathcal{N}_n = formal moduli space of $(X, \iota, \lambda, \rho)$ where

- $X = \text{formal } \mathcal{O}_{F_0}\text{-module.}$
- $\iota: \mathcal{O}_F \longrightarrow End(X)$ such that Lie(X) is of signature (1, n-1).
- λ = principal polarization, compatible with ι .
- ρ = framing with (X, ι_X, λ_X) .

this moduli space is represented by a formal scheme \mathcal{N}_n formally smooth of relative dimension n-1 over $Spf(\mathcal{O}_{\breve{F}})$.

 Δ is the graph of

$$\delta: \mathscr{N}_n \longrightarrow \mathscr{N}_{n+1}$$
$$X \longmapsto X \times \overline{\mathscr{E}}$$

 $\langle , \rangle = \text{intersection product} = \chi(\mathscr{N}_{n,n+1}, \mathcal{O}_{g\Delta} \otimes^{L} \mathcal{O}_{\Delta}).$

Long history: Wei Zhang, Mihatsch-Zhang, Zhiyu Zhang.

3. AFL FOR THE WHOLE HECKE ALGEBRA

The goal of today's talk: to present conjectural full AFL, which can be viewed an arithmetic version of Leslie's full fundamental lemma.

Conjecture:

$$2\langle \Delta, T(\varphi)\Delta \rangle_{\mathcal{N}_{n,n+1}} log q = -\omega(\gamma) \cdot \partial \mathcal{O}_{\gamma}(\varphi')$$

Theorem 3.1. full AFL holds for n = 1.

We have a map $\mathbb{Z}[X] \to Corr(\mathcal{N}_n, \mathcal{N}_n) : X \mapsto \tau_1, \, \mathbb{Z}[X] \otimes \mathbb{C} = \mathscr{H}(G_{W_0})$. The heart of the proof is that all the relevant maps between the local R-Z spaces are finite and flat.

Same procedure works in global case, e.g. for the modular curve.

for general n: Set $m = \left[\frac{n}{2}\right]$,

$$\mathcal{N}_n^{[t]} = \{(X, \iota, \lambda, \rho) | Ker(\lambda) \subset X(\varpi), | Ker(\lambda) = q^{2t} \}$$

For $t' \leq t$,

$$\mathcal{N}^{[t,t']} = \{ (X,X') \in \mathcal{N}^{[t]} \times \mathcal{N}^{[t']} + \text{lifting } \alpha : X^{[t]} \to X^{[t']}, \text{lift } \mathbb{X}^{[t]} \to \mathbb{X}^{[t']}, \alpha^*(\lambda') = \alpha \}$$

For $t' \ge t$, set $\mathscr{N}^{[t,t']} = {}^t \mathscr{N}^{[t',t]}$.

Proposition 3.2. (Gatz, He, Rapo) Let $n \geq 2$, $t \neq t'$, consider the forgetful morphism

$$\pi: \mathcal{N}^{[t,t']} \longrightarrow \mathcal{N}^{[t']}$$

then π is finite flat if and only if t = 1, t' = 0.

This is a serious problem, as in general

$$(\tau_t)_* \neq (\tau_t^+)_* \circ (\tau_t^-)_* : K(\mathcal{N}_n) \to K(\mathcal{N}_n)$$

We can define \mathbb{T}_t as $(\tau_t^+)_* \circ (\tau_t^-)_*$. The problem is: does \mathbb{T}_t commute with each other for varying t? If this holds, then as in the dim 1 case, we can define

$$\mathscr{H}_{K_n} = \mathbb{C}[x_1, \cdots, x_m] \longrightarrow End(K(\mathscr{N}_n))$$

$$X_t \longmapsto \mathbb{T}_t$$

For full AFL, have to replace \mathcal{N}_n by $\mathcal{N}_{n,n+1}$

$$\mathscr{H}_{K^b \times K} = \mathscr{H}_{K^b} \otimes \mathscr{H}_K = \mathbb{C}[x_i] \otimes \mathbb{C}[y_i]$$